【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=5 ,b=5,求sinBsinC的值.
【答案】解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,
即(2cosA﹣1)(cosA+2)=0,解得 (舍去).
因為0<A<π,所以 .
(Ⅱ)由S= =
=
,得到bc=20.又b=5,解得c=4.
由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故 .
又由正弦定理得
【解析】(Ⅰ)利用三角函數(shù)積化和差與和差化積化簡cos2A﹣3cos(B+C)=1,進而求得∠A的余弦值,即可求得∠A的值;(Ⅱ)先根據(jù)三角形面積及b的值求得c的值,再由余弦定理求得a的值,利用正弦定理求得sinB與sinC的值,即可求解.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:
;
;
才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面
平面
,
為等邊三角形,
且
,
分別為
的中點.
(1)求證: 平面
.
(2)求證:平面平面
.
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)在定義域內存在區(qū)間
,使得該函數(shù)在區(qū)間
上的值域為
,則稱函數(shù)
是該定義域上的“和諧函數(shù)”.
(1)求證:函數(shù)是“和諧函數(shù)”;
(2)若函數(shù)是“和諧函數(shù)”,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓
.
(Ⅰ)若直線過點
且到圓心
的距離為1,求直線
的方程;
(Ⅱ)設過點的直線
與圓
交于
兩點(
的斜率為正),當
時,求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設一次訂購量為個,零件的實際出廠單價為
元,寫出函數(shù)
的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元? (工廠售出一個零件的利潤=實際出廠單價-單件成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2 ,E,F(xiàn)分別是AD,PC的中點.
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是__________.(填上所有正確命題的序號)
①若,
,則
; ②若
,
,則
;
③若,
,則
; ④若
,
,
,
,則
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com