【題目】判斷下列結論的正誤(正確的打“√”,錯誤的打“×”).
()在增函數(shù)與減函數(shù)的定義中,可以把“任意兩個自變量”改為“存在兩個自變量”._____
()函數(shù)
的單調遞減區(qū)間是
._____
()所有的單調函數(shù)都有最值._______
()
與
表示同一個集合.______
()已知定義在
上的函數(shù)
的圖象是連續(xù)不斷的,當
時,則方程
至少有一個實數(shù)解._______
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
()當
時,求
在區(qū)間
上的最大值和最小值.
()解關于
的不等式
.
()當
時,若存在
,使得
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,平面
平面
,
為等邊三角形,
且
,
分別為
的中點.
(1)求證: 平面
.
(2)求證:平面平面
.
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內為增函數(shù),求正實數(shù)p的取值范圍;
(Ⅲ)設函數(shù)g(x)= (e為自然對數(shù)底數(shù)),若在[1,e]上至少存在一點x0 , 使得f(x0)>g(x0)成立,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過
,
,且圓心在直線
上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線垂直且與圓相切的直線方程.
(Ⅲ)若點為圓
上任意點,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2kx﹣4,若對任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,則實數(shù)k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0),A1 , A2是實軸頂點,F(xiàn)是右焦點,B(0,b)是虛軸端點,若在線段BF上(不含端點)存在不同的兩點p1(i=1,2),使得△PiA1A2(i=1,2)構成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是( )
A.( ,+∞)
B.( ,+∞)
C.(1, )
D.( ,
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com