【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1 , F2在軸上,焦距為2,離心率為 .
(1)求橢圓C的方程;
(2)若P是橢圓C上第一象限內(nèi)的點(diǎn),△PF1F2的內(nèi)切圓的圓心為I,半徑為 .求:
(i)點(diǎn)P的坐標(biāo);
(ii)直線PI的方程.
【答案】
(1)解:設(shè)橢圓C的方程為 ,(a>b>0),
由題意得 ,
解得a2=4,b2=3,
∴橢圓C的方程為 .
(2)解:(i)∵|PF1|+|PF2|=4,∴在△PF1F2中,|PF1|+|PF2|+|F1F2|=6,
∴△PF1F2的面積 =
(|PF1|+|PF2|+|F1F2|)r=
,
又 =
,
∴ ,由
,得xP=1,∴P(1,
).
(ii)∵P(1, ),F(xiàn)1(﹣1,0),∴直線PF1的方程為
=
,
∴3x﹣4y+3=0,
∵△PF1F2的內(nèi)切圓的半徑為 ,∴設(shè)I(
),
則 =
,
解得 或
(舍).
∴直線PI的方程為y=2x﹣ .
【解析】(1)設(shè)橢圓C的方程為 ,(a>b>0),由焦距為2,離心率為
,列方程組解得a2=4,b2=3,由此能求出橢圓C的方程.(2)(i)由|PF1|+|PF2|=,得|PF1|+|PF2|+|F1F2|=6,利用△PF1F2的面積能求出P點(diǎn)坐標(biāo).(ii)先求出直線PF1的方程,設(shè)I(
),由點(diǎn)到直線的距離公式能求出直線PI的方程.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解橢圓的標(biāo)準(zhǔn)方程(橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:
).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式;
(2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出一個(gè)用循環(huán)語(yǔ)句編寫(xiě)的程序:
k=1
sum=0
WHILE k<10
sum=sum+k∧2
k=k+1
WEND
PRINT sum
END
(1)指出程序所用的是何種循環(huán)語(yǔ)句,并指出該程序的算法功能;
(2)請(qǐng)用另一種循環(huán)語(yǔ)句的形式把該程序?qū)懗鰜?lái).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)
已知函數(shù)(
為常數(shù))的圖像與
軸交于點(diǎn)
,曲線
在點(diǎn)
處的切線斜率為
.
(1)求的值及函數(shù)
的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對(duì)任意給定的正數(shù),總存在
,使得當(dāng)
時(shí),恒有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分圖象如圖所示,當(dāng)x=
時(shí),y最大值1,當(dāng)x=
時(shí),取得最小值-1
(1)求y=f(x)的解析式;
(2)寫(xiě)出此函數(shù)取得最大值時(shí)自變量x的集合和它的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈(1,+∞), >1;命題q:a∈(0,1),函數(shù)y=ax在(﹣∞,+∞)上為減函數(shù),則下列命題為真命題的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知橢圓:
的長(zhǎng)軸為
,過(guò)點(diǎn)
的直線
與
軸垂直,橢圓
上一點(diǎn)與橢圓
的長(zhǎng)軸的兩個(gè)端點(diǎn)構(gòu)成的三角形的最大面積為2,且橢圓的離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 設(shè)是橢圓
上異于
,
的任意一點(diǎn),連接
并延長(zhǎng)交直線
于點(diǎn)
,
點(diǎn)為
的中點(diǎn),試判斷直線
與橢圓
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的左右焦點(diǎn)分別為
,
,左頂點(diǎn)為
,上頂點(diǎn)為
,
的面積為
.
(1)求橢圓的方程;
(2)設(shè)直線:
與橢圓
相交于不同的兩點(diǎn)
,
,
是線段
的中點(diǎn).若經(jīng)過(guò)點(diǎn)
的直線
與直線
垂直于點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(
,
).
(1)若,
,求函數(shù)
的單調(diào)減區(qū)間;
(2)若時(shí),不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng),
時(shí),記函數(shù)
的導(dǎo)函數(shù)
的兩個(gè)零點(diǎn)是
和
(
),求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com