日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)g(x)= (a∈R),f(x)=ln(x+1)+g(x).

          (1)若函數(shù)g(x)過點(diǎn)(1,1),求函數(shù)f(x)的圖象在x=0處的切線方程;

          (2)判斷函數(shù)f(x)的單調(diào)性.

          【答案】(1) y=3x;(2)見解析.

          【解析】試題分析:(1)代入點(diǎn)(1,1),求得a=2,求出f(x)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),即可得到切線方程;
          (2)求出f(x)的導(dǎo)數(shù),對(duì)a討論,當(dāng)a≥0時(shí),當(dāng)a<0時(shí),令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間.

          試題解析:

          (1)因?yàn)楹瘮?shù)g(x)過點(diǎn)(1,1),所以1=,解得a=2,所以f(x)=ln(x+1)+.由f′(x)=,則f′(0)=3,所以所求的切線的斜率為3.又f(0)=0,所以切點(diǎn)為(0,0),故所求的切線方程為y=3x.

          (2)因?yàn)?/span>f(x)=ln(x+1)+ (x>-1),

          所以f′(x)=.

          ①當(dāng)a≥0時(shí),因?yàn)?/span>x>-1,所以f′(x)>0,

          f(x)在(-1,+∞)上單調(diào)遞增;

          ②當(dāng)a<0時(shí),由得-1<x<-1-a,

          f(x)在(-1,-1-a)上單調(diào)遞減;

          x>-1-a,

          f(x)在(-1-a,+∞)上單調(diào)遞增.

          綜上,當(dāng)a≥0時(shí),函數(shù)f(x)在(-1,+∞)上單調(diào)遞增;

          當(dāng)a<0時(shí),函數(shù)f(x)在(-1,-1-a)上單調(diào)遞減,

          在(-1-a,+∞)上單調(diào)遞增.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

          (2)若函數(shù)有兩個(gè)極值點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

          零件的個(gè)數(shù)x(個(gè))

          2

          3

          4

          5

          加工的時(shí)間y(小時(shí))

          2.5

          3

          4

          4.5

          (1)求出y關(guān)于x的線性回歸方程;

          (2)試預(yù)測(cè)加工10個(gè)零件需要多少小時(shí)?

          (注:=,=-b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),則函數(shù) 的零點(diǎn)個(gè)數(shù)為( )

          A. 8 B. 7 C. 6 D. 5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn),則取到最小值時(shí)點(diǎn)的坐標(biāo)為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某圓的極坐標(biāo)方程為,

          (1)圓的普通方程和參數(shù)方程;

          (2)圓上所有點(diǎn)的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖.

          注:年份代碼1~7分別對(duì)應(yīng)年份2010~2016.

          (Ⅰ)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

          (Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2018年我國生活垃圾無害化處理量.

          參考數(shù)據(jù):,,.

          參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C的極坐標(biāo)方程為ρ2.

          (1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;

          (2)P(xy)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x4y的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

          (I)求的解析式及單調(diào)遞減區(qū)間;

          (II)若存在 ,使函數(shù)成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案