日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】關(guān)于函數(shù),下列說法正確的是( )

          1的極小值點;

          2)函數(shù)有且只有1個零點;

          3恒成立;

          4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

          A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

          【答案】C

          【解析】

          對于(1),對函數(shù)求導(dǎo),得出函數(shù)的單調(diào)性,可判斷;

          對于(2)令,對其求導(dǎo),得出其單調(diào)性,且可得出當,可判斷;

          對于(3),令,對其求導(dǎo),得出其單調(diào)性,取特殊函數(shù)值,可判斷;

          對于(4),對函數(shù)求導(dǎo)可得,分析判斷出上單調(diào)遞增,也即是,單調(diào)遞增,將已知條件轉(zhuǎn)化為 上至少有兩個不同的正根,可得,令 求導(dǎo),分析的單調(diào)性,可得出的范圍,可判斷命題.

          對于(1),由題意知,,令,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          所以的極小值點,故(1)正確;

          對于(2)令,則.函數(shù)上單調(diào)遞減, 又當,,

          所以函數(shù)有且只有1個零點,故(2)正確;

          對于(3),令,則,

          所以函數(shù)單調(diào)遞減,且,所以函數(shù)內(nèi)不是恒成立的,

          所以不是恒成立的,故(3)不正確;

          對于(4),因為,所以,

          ,則,所以當時,,

          所以上單調(diào)遞增,且,所以當時,,

          所以上單調(diào)遞增,也即是,單調(diào)遞增,

          又因為上的值域是,所以 ,

          上至少有兩個不同的正根, ,

          求導(dǎo)得

          ,則,所以 上單調(diào)遞增,且,

          所以當時, ,當時,

          所以是單調(diào)遞減,上單調(diào)遞增,所以,而

          所以,故(4)正確;

          所以正確的命題有:(1)(2)(4),

          故選:C.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)、是關(guān)于的方程的兩個不相等的實數(shù)根,那么過兩點、的直線與圓的位置關(guān)系是(

          A.相離B.相切C.相交D.的變化而變化

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓)的左右焦點分別為,,點在橢圓上,且.

          1)求橢圓的方程;

          2)點P,Q在橢圓上,O為坐標原點,且直線,的斜率之積為,求證:為定值;

          3)直線l過點且與橢圓交于AB兩點,問在x軸上是否存在定點M,使得為常數(shù)?若存在,求出點M坐標以及此常數(shù)的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱,則為偶函數(shù);③若對,有,則2的一個周期;④函數(shù)的圖象關(guān)于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為響應(yīng)綠色出行,某市在推出共享單車后,又推出新能源分時租賃汽車.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:根據(jù)行駛里程數(shù)按1/公里計費;行駛時間不超過分時,按/分計費;超過分時,超出部分按/分計費.已知王先生家離上班地點公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間 ()是一個隨機變量.現(xiàn)統(tǒng)計了次路上開車花費時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:

          時間(分)

          頻數(shù)

          將各時間段發(fā)生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用(元)與用車時間(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時間不超過分為路段暢通”,設(shè)表示3次租用新能源分時租賃汽車中路段暢通的次數(shù),求的分布列和期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

          (Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

          (Ⅱ)若直線經(jīng)過曲線的焦點且與曲線相交于兩點,設(shè)線段的中點為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列滿足.

          (1)若,求數(shù)列的通項公式;

          (2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;

          (3)若,且,數(shù)列有最大值與最小值,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為件.

          1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);

          2)促銷費用投入多少萬元時,該公司的利潤最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列滿足:,且對一切,均有

          1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

          2)求數(shù)列的前項和

          3)設(shè),記數(shù)列的前項和為,求正整數(shù),使得對任意,均有

          查看答案和解析>>

          同步練習(xí)冊答案