日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,平面,是正方形,中點(diǎn),點(diǎn)上,且.

          1)證明平面;

          2)若,求平面與平面所成二面角的正弦值.

          【答案】(1)證明見詳解;(2).

          【解析】

          1)根據(jù)平面,可得,再證,即可由線線垂直推證線面垂直;

          2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求得兩個(gè)平面的法向量,再求出夾角的余弦,轉(zhuǎn)化為正弦值即可.

          1)因?yàn)?/span>平面平面,故可得;

          設(shè)底面正方形的邊長(zhǎng)為4,故可得,

          ,

          故在中,滿足,故可得

          平面,且

          平面,即證.

          2)因?yàn)?/span>平面,平面,故可得,

          又底面為正方形,故可得

          故以為坐標(biāo)原點(diǎn),以所在直線為軸建立空間直角坐標(biāo)系如下圖所示:

          設(shè),故可得

          設(shè)平面的法向量為,

          ,則

          ,則.

          不妨取平面的法向量.

          .

          設(shè)平面與平面所成二面角的平面為,

          .

          即平面與平面所成二面角的正弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè),且.

          (1)a的值及f(x)的定義域;

          (2)f(x)在區(qū)間上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動(dòng)點(diǎn)C的軌跡為曲線G.

          1)求曲線G的方程;

          2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

          (Ⅱ)已知點(diǎn),直線與曲線相交于點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

          2)若在定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,,,.

          (Ⅰ)求證:;

          (Ⅱ)若平面平面,且直線與平面所成角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)求函數(shù)的極值;

          2)若,試討論關(guān)于的方程 的解的個(gè)數(shù),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

          在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

          (2)若射線 與曲線交于兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)若,求不等式的解集;

          2)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案