已知橢圓(a>b>0)的離心率e=
,連接橢圓的四個頂點得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-
,0).若
,求直線l的傾斜角;
(Ⅰ) (Ⅱ)直線l的傾斜角為
或
.
解析試題分析:(Ⅰ)由e=,得
.再由
,解得a=2b.
由題意可知,即ab=2.
解方程組得a=2,b="1."
所以橢圓的方程為.
(Ⅱ)解:由(Ⅰ)可知點A的坐標是(-2,0).設點B的坐標為,直線l、的斜率為k.則直線l的方程為y=k(x+2).
于是A、B兩點的坐標滿足方程組消去y并整理,得
.
由,得
.從而
.
所以.
由,得
.
整理得,即
,解得k=
.
所以直線l的傾斜角為或
.
考點:直線與圓錐曲線的綜合問題
點評:本小題主要考查橢圓的標準方程和幾何性質、直線的方程、兩點間的距離公式、直線的傾斜角、平面向量等基礎知識,考查用代數(shù)方法研究圓錐曲線的性質及數(shù)形結合的思想,考查綜合分析與運算能力.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的長軸長為,一個焦點的坐標為(1,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(ⅰ)若直線l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的右焦點為
,離心率為
。
(1)若,求橢圓的方程。
(2)設直線與橢圓相交于
兩點,
分別為線段
的中點。若坐標原點
在以線段
為直徑的圓上,且
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率為
,定點
,橢圓短軸的端點是
,
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點且斜率不為
的直線交橢圓
于
,
兩點.試問
軸上是否存在定點
,使
平分
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題共12分)
如圖,已知直線l與拋物線相切于點P(2,1),且與x軸交于點A,O為坐標原點,
定點B的坐標為(2,0).
(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設分別是橢圓的
左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且
,求點
的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知點在橢圓C:
上,且橢圓C的離心率
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作直線交橢圓C于點A.B.△ABQ的垂心為T,是否存在實數(shù)m ,使得垂心T在y軸上.若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知三點,曲線
上任一點
滿足
=
(1) 求曲線的方程;
(2) 設是(1)中所求曲線
上的動點,定點
,線段
的垂直平分線與
軸交于點
,求實數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
拋物線頂點在坐標原點,焦點與橢圓的右焦點
重合,過點
斜率為
的直線與拋物線交于
,
兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com