(本小題滿分12分)
已知三點(diǎn),曲線
上任一點(diǎn)
滿足
=
(1) 求曲線的方程;
(2) 設(shè)是(1)中所求曲線
上的動(dòng)點(diǎn),定點(diǎn)
,線段
的垂直平分線與
軸交于點(diǎn)
,求實(shí)數(shù)
的最小值.
(1) (2)
解析試題分析:解(1)設(shè),
=
化簡(jiǎn)得曲線的方程為:
………6分
(2)直線的斜率為:
,線段
的中點(diǎn)
∴線段的垂直平分線方程是:
………8分
由,令
得:
=
當(dāng)且僅當(dāng)時(shí),實(shí)數(shù)
取得最小值
. ………12分
考點(diǎn):向量的坐標(biāo)運(yùn)算;拋物線的方程;直線的方程;基本不等式。
點(diǎn)評(píng):關(guān)于曲線的題目是試題出現(xiàn)頻率較高的題目,此類題目運(yùn)用知識(shí)點(diǎn)多,難度相對(duì)較高。令求最值常用方法由配方法、基本不等式法和導(dǎo)數(shù)法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線A C、BD過(guò)原點(diǎn)O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓(a>b>0)的離心率e=
,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-
,0).若
,求直線l的傾斜角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知橢圓C:(
.
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)的直線
與橢圓C交于不同的兩點(diǎn)
,且
為銳角(其中
為坐標(biāo)原點(diǎn)),求直線
的斜率k的取值范圍;
(3)如圖,過(guò)原點(diǎn)任意作兩條互相垂直的直線與橢圓
(
)相交于
四點(diǎn),設(shè)原點(diǎn)
到四邊形
一邊的距離為
,試求
時(shí)
滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓E:的焦點(diǎn)坐標(biāo)為
(
),點(diǎn)M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過(guò)Q點(diǎn)引直線與橢圓E交于
兩點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率
,過(guò)點(diǎn)
和
的直線與原點(diǎn)的距離為
。⑴求橢圓的方程;⑵已知定點(diǎn)
,若直線
與橢圓交于
兩點(diǎn),問(wèn):是否存在
的值,使以
為直徑的圓過(guò)
點(diǎn)?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,橢圓
的焦距為2,且過(guò)點(diǎn)
.
求橢圓的方程;
若點(diǎn),
分別是橢圓
的左、右頂點(diǎn),直線
經(jīng)過(guò)點(diǎn)
且垂直于
軸,點(diǎn)
是橢圓上異于
,
的任意一點(diǎn),直線
交
于點(diǎn)
(。┰O(shè)直線的斜率為
直線
的斜率為
,求證:
為定值;
(ⅱ)設(shè)過(guò)點(diǎn)垂直于
的直線為
.求證:直線
過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過(guò)右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B
的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題13分)設(shè)橢圓的左右焦點(diǎn)分別為
,
,上頂點(diǎn)為
,過(guò)點(diǎn)
與
垂直的直線交
軸負(fù)半軸于
點(diǎn),且
是
的中點(diǎn).
(1)求橢圓的離心率;
(2)若過(guò)點(diǎn)的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過(guò)右焦點(diǎn)作斜率為
的直線
與橢圓相交于
兩點(diǎn),在
軸上是否存在點(diǎn)
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com