日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某國營企業(yè)集團(tuán)公司現(xiàn)有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了激化內(nèi)部活力,增強(qiáng)企業(yè)競爭力,集團(tuán)公司董事會(huì)決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出)名員工從事第三產(chǎn)業(yè);調(diào)整后,他們平均每人每年創(chuàng)造利潤萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.

          (Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

          (Ⅱ)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則實(shí)數(shù)的取值范圍是多少?

          【答案】(Ⅰ)500名(Ⅱ)

          【解析】

          (1)根據(jù)題意可列出,進(jìn)而解不等式即可求得的范圍,從而得解;

          2)根據(jù)題意分別表示出從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤和從事原來產(chǎn)業(yè)的員工的年總利潤,進(jìn)而根據(jù)題意列出不等式,轉(zhuǎn)化為不等式恒成立問題,再利用基本不等式,即可得解.

          解:(Ⅰ)由題意,得,

          整理得,解得,

          ,

          最多調(diào)整出500名員工從事第三產(chǎn)業(yè).

          (Ⅱ)從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤為萬元,

          從事原來產(chǎn)業(yè)的員工的年總利潤為萬元.

          則由題意,知

          當(dāng)時(shí),恒有,

          整理得時(shí)恒成立.

          當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,

          ,

          ,

          的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的短軸長為,離心率為.

          1)求橢圓的方程;

          2)求過橢圓的右焦點(diǎn)且傾斜角為135°的直線,被橢圓截得的弦長;

          3)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長交橢圓點(diǎn),且的周長為.

          1)求橢圓的方程;

          2)設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線與直分別相交于兩點(diǎn),點(diǎn),試問:的外接圓是否恒過軸上的定點(diǎn)(異于點(diǎn))?若是,求該定點(diǎn)坐標(biāo);若否,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,四邊形ABCD為正方形,平面ACD,且,EPD的中點(diǎn).

          (Ⅰ)證明:平面平面PAD;

          (Ⅱ)求直線PA與平面AEC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)aR,若不等式恒成立,則實(shí)數(shù)a的取值范圍是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,一個(gè)動(dòng)圓經(jīng)過點(diǎn)且與直線相切,設(shè)該動(dòng)圓圓心的軌跡為曲線.

          1)求曲線的方程;

          2)過點(diǎn)作直線交曲線,兩點(diǎn),問曲線上是否存在一個(gè)定點(diǎn),使得點(diǎn)在以為直徑的圓上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

          2)若直線與曲線相交于,兩點(diǎn),且,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          如圖,在三棱錐, 側(cè)面與側(cè)面均為等邊三角形,中點(diǎn).

          )證明:平面

          )求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,橢圓、,為橢圓的左、右頂點(diǎn).

          設(shè)為橢圓的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí),取得最小值與最大值.

          若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓的標(biāo)準(zhǔn)方程.

          若直線中所述橢圓相交于、兩點(diǎn)(、不是左、右頂點(diǎn)),且滿足,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案