【題目】【2017廣東佛山二!已知橢圓:
(
)的焦距為4,左、右焦點分別為
、
,且
與拋物線
:
的交點所在的直線經(jīng)過
.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過、
作平行直線
、
,若直線
與
交于
,
兩點,與拋物線
無公共點,直線
與
交于
,
兩點,其中點
,
在
軸上方,求四邊形
的面積的取值范圍.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析:(I)由焦距可得,故橢圓與拋物線交點坐標(biāo)為
,利用橢圓的定義求得
,利用
解得
,由此求得橢圓的方程;(II)設(shè)出直線
的方程,聯(lián)立直線的方程和拋物線的方程,利用判別式小于零求得
的取值范圍.聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理,寫出
的弦長,求得
兩條直線的距離,代入面積公式,化簡后利用基本不等式求取值范圍.
試題解析:
(Ⅰ)依題意得,則
,
.
所以橢圓與拋物線
的一個交點為
,
于是,從而
.
又,解得
所以橢圓的方程為
.
(Ⅱ)依題意,直線的斜率不為0,設(shè)直線
:
,
由,消去
整理得
,由
得
.
由,消去
整理得
,
設(shè),
,則
,
,
所以,
與
間的距離
(即點
到
的距離),
由橢圓的對稱性知,四邊形為平行四邊形,
故,
令,則
,
所以四邊形的面積的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣6x+5,x∈R.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)求曲線f(x)過點(1,0)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接“雙十一”活動,某網(wǎng)店需要根據(jù)實際情況確定經(jīng)營策略.
(1)采購員計劃分兩次購買一種原料,第一次購買時價格為a元/個,第二次購買時價格為b元/個(其中a≠b).該采購員有兩種方案:方案甲:每次購買m個;方案乙:每次購買n元.請確定按照哪種方案購買原料平均價格較小.
(2)“雙十一”活動后,網(wǎng)店計劃對原價為100元的商品兩次提價,現(xiàn)有兩種方案:方案丙:第一次提價p,第二次提價q;方案丁:第一次提價 ,第二次提價
,(其中p≠q)請確定哪種方案提價后價格較高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1(a>0,且a≠1),當(dāng)x∈(0,+∞)時,f(x)>0,且函數(shù)g(x)=f(x+1)﹣4的圖象不過第二象限,則a的取值范圍是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,A,B是銳角,c=10,且 .
(1)證明角C=90°;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計,得到如圖所示的頻率分布直方圖,已知高一年級共有學(xué)生600名,據(jù)此估計,該模塊測試成績不少于60分的學(xué)生人數(shù)為( )
A.588
B.480
C.450
D.120
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com