日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在底面是菱形的四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,點(diǎn)E,F分別為BC,PD的中點(diǎn),設(shè)直線PC與平面AEF交于點(diǎn)Q

          1)已知平面PAB平面PCD=l,求證:ABl

          2)求直線AQ與平面PCD所成角的正弦值.

          【答案】1)證明見解析;(2

          【解析】

          1)證明AB∥平面PCD,然后利用直線與平面平行的性質(zhì)定理證明ABl;

          2)以點(diǎn)A為原點(diǎn),直線AE、AD、AP分別為軸建立空間直角坐標(biāo)系,求出平面PCD的法向量和直線AQ的方向向量,然后利用空間向量的數(shù)量積求解直線AQ與平面PCD所成角的正弦值即可.

          1)證明:∵ABCD,AB平面PCD,CD平面PCD

          AB∥平面PCD

          AB平面PAB,平面PAB平面PCD=l,

          ABl;

          2)∵底面是菱形,EBC的中點(diǎn),且AB=2,

          AEAD,又PA⊥平面ABCD,則以點(diǎn)A為原點(diǎn),直線AE、AD、AP分別為x、y、z軸建立如圖所示空間直角坐標(biāo)系,

          ,

          ,

          設(shè)平面PCD的法向量為,有,得,

          設(shè),則,

          再設(shè),

          ,解之得,∴

          設(shè)直線AQ與平面PCD所成角為α,

          ∴直線AQ與平面PCD所成角的正弦值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

          1)若直線平行于直線,且與曲線只有一個(gè)公共點(diǎn),求直線的方程;

          2)若直線與曲線交于兩點(diǎn),求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知某種氣墊船的最大航速是海里小時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比.若船速為海里小時(shí),則船每小時(shí)的燃料費(fèi)用為元,其余費(fèi)用(不論船速為多少)都是每小時(shí)元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

          (1)試把船從甲地到乙地所需的總費(fèi)用,表示為船速(海里小時(shí))的函數(shù),并指出函數(shù)的定義域;

          (2)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需的總費(fèi)用最少?最少費(fèi)用為多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

          1)求雙曲線的方程;

          2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

          3)過圓上任意一點(diǎn)作圓的切線交雙曲線、兩點(diǎn),中點(diǎn)為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:

          文藝節(jié)目

          新聞節(jié)目

          總計(jì)

          2040

          30

          18

          48

          大于40

          20

          32

          52

          總計(jì)

          50

          50

          100

          (1)用分層抽樣方法在收看文藝節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?

          (2)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為大于40歲的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正方形ABCD的邊長(zhǎng)為2,對(duì)角線ACBD相交于點(diǎn)O,動(dòng)點(diǎn)P滿足,若,其中m、nR,則的最大值是________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有兩個(gè)不同零點(diǎn)、),設(shè)函數(shù)的定義域?yàn)?/span>,且的最大值記為,最小值記為.

          1)求(用表示);

          2)當(dāng)時(shí),試問以、為長(zhǎng)度的線段能否組成一個(gè)三角形,如果不一定,進(jìn)一步求出的取值范圍,使它們能組成一個(gè)三角形;

          3)求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,為了測(cè)量AB處島嶼的距離,小海在D處觀測(cè),A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛20海里至C處,觀測(cè)BC處的正北方向,AC處的北偏西45°方向,則AB兩島嶼的距高為___________海里.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、FAB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm2

          1)若廣告商要求包裝盒側(cè)面積Scm)最大,試問x應(yīng)取何值?

          2)若廣告商要求包裝盒容積Vcm)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案