日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ln(x+1)+
          (I)討論函數(shù)f(x)在(0,+∞)上的單調性;
          (II)設函數(shù)f(x)存在兩個極值點,并記作x1 , x2 , 若f(x1)+f(x2)>4,求正數(shù)a的取值范圍;
          (III)求證:當a=1時,f(x)> (其中e為自然對數(shù)的底數(shù))

          【答案】解:(Ⅰ) ,(*)

          當a≥2時,∵x>0,∴ ,函數(shù)f(x)在(0,+∞)上是增函數(shù);

          當0<a<2時,由f'(x)=0,得x2+a(a﹣2)=0,解得 (負值舍去), ,

          所以當x∈(0,x2)時,x2+a(a﹣2)<0,從而f'(x)<0,函數(shù)f(x)在(0,x2)上是減函數(shù);

          當x∈(x2,+∞)時,x2+a(a﹣2)>0,從而f'(x)>0,函數(shù)f(x)在(x2,+∞)上是增函數(shù).

          綜上,當a≥2時,函數(shù)f(x)在(0,+∞)上是增函數(shù);

          當0<a<2時,函數(shù)f(x)在 上是減函數(shù),在 上是增函數(shù)

          (Ⅱ)由(Ⅰ)知,當a≥2時,f'(x)>0,函數(shù)f(x)無極值點;

          要使函數(shù)f(x)存在兩個極值點,必有0<a<2,且極值點必為 , ,

          又由函數(shù)定義域知,x>﹣1,則有 ,即 ,化為(a﹣1)2>0,所以a≠1,

          所以,函數(shù)f(x)存在兩個極值點時,正數(shù)a的取值范圍是(0,1)∪(1,2).

          由(*)式可知,

          f(x1)+f(x2

          =ln(1+x1)+ +ln(1+x2)+

          =ln(1+x1+x2+x1x2)+

          =ln[(a﹣1)2]+

          =ln[(a﹣1)2]+ ﹣2;

          不等式f(x1)+f(x2)>4化為 ,

          令a﹣1=t(a∈(0,1)∪(1,2)),所以t∈(﹣1,0)∪(0,1),

          ,t∈(﹣1,0)∪(0,1).

          當t∈(﹣1,0)時, ,所以g(t)<0,不合題意;

          當t∈(0,1)時, ,

          所以g(t)在(0,1)是減函數(shù),所以 ,適合題意,即a∈(1,2).

          綜上,若f(x1)+f(x2)>4,此時正數(shù)a的取值范圍是(1,2).

          (Ⅲ)證明:當a=1時, ,

          不等式 可化為 ,所以

          要證不等式 ,即證 ,即證 ,

          ,則 ,

          在(0,1)上,h'(x)<0,h(x)是減函數(shù);

          在¨1+∞)上,h'(x)>0,h(x)是增函數(shù).

          所以h(x)≥h(1)=1,

          ,則(x)是減函數(shù),

          所以(x)<(0)=1,

          所以(x)<h(x),即

          所以當a=1時,不等式 成立


          【解析】(Ⅰ)求出函數(shù)的導數(shù),通過討論a的范圍求出函數(shù)的單調區(qū)間即可;(Ⅱ)求出x1,x2,得到f(x1)+f(x2)的解析式,問題轉化為 ,令a﹣1=t(a∈(0,1)∪(1,2)),所以t∈(﹣1,0)∪(0,1),令 ,根據(jù)函數(shù)的單調性判斷即可;(Ⅲ)問題轉化為證明 ,即證 ,設 ,根據(jù)函數(shù)的單調性證明即可.
          【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值與導數(shù)的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=2|x+a|+|x﹣ |(a≠0).
          (1)當a=1時,解不等式f(x)<4;
          (2)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
          (1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個極值點,求a的范圍;
          (2)當a≤﹣1時,證明:f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】拋物線C:y2=4x的焦點為F,準線為l,P為拋物線C上一點,且P在第一象限,PM⊥l于點M,線段MF與拋物線C交于點N,若PF的斜率為 ,則 =(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某工程設備租賃公司為了調查A,B兩種挖掘機的出租情況,現(xiàn)隨機抽取了這兩種挖掘機各100臺,分別統(tǒng)計了每臺挖掘機在一個星期內的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表: A型車挖掘機

          出租天數(shù)

          1

          2

          3

          4

          5

          6

          7

          車輛數(shù)

          5

          10

          30

          35

          15

          3

          2

          B型車挖掘機

          出租天數(shù)

          1

          2

          3

          4

          5

          6

          7

          車輛數(shù)

          14

          20

          20

          16

          15

          10

          5

          (Ⅰ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),將頻率視為概率,求該公司一臺A型挖掘機,一臺B型挖掘機一周內合計出租天數(shù)恰好為4天的概率;
          (Ⅱ)如果A,B兩種挖掘機每臺每天出租獲得的利潤相同,該公司需要從A,B兩種挖掘機中購買一臺,請你根據(jù)所學的統(tǒng)計知識,給出建議應該購買哪一種類型,并說明你的理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若函數(shù)f(x)對定義域內的任意x1 , x2 , 當f(x1)=f(x2)時,總有x1=x2 , 則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù).若函數(shù) 為單純函數(shù),則實數(shù)m的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若函數(shù)f(x)=alog2(|x|+4)+x2+a2﹣8有唯一的零點,則實數(shù)a的值是(
          A.﹣4
          B.2
          C.±2
          D.﹣4或2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若a>b>1,0<c<1,則(
          A.ac<bc
          B.abc<bac
          C.alogbc<blogac
          D.logac<logbc

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
          (Ⅰ)證明:PA⊥BD;
          (Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.

          查看答案和解析>>

          同步練習冊答案