日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}滿(mǎn)足an=Sn-1+n,a1=0,求{an}的通項(xiàng)公式.
          考點(diǎn):數(shù)列遞推式
          專(zhuān)題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
          分析:在數(shù)列遞推式中取n=n+1得到另一遞推式,作差后得到新的等比數(shù)列{an+1},由等比數(shù)列的通項(xiàng)公式得答案.
          解答: 解:由an=Sn-1+n(n≥2),得:
          an+1=Sn+n+1,
          兩式作差得:an+1-an=an+1,
          即an+1=2an+1,
          an=2an-1+1.
          則an+1=2(an-1+1)(n≥2).
          又a1+1=0+1=1≠0,
          ∴數(shù)列{an+1}是以1為首項(xiàng),以2為公比的等比數(shù)列.
          an+1=1×2n-1,
          an=2n-1-1(n≥2).
          驗(yàn)證a1=0適合上式.
          an=2n-1-1
          點(diǎn)評(píng):本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)n∈N*,曲線y=xn(1-x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an,則a4為( 。
          A、80B、32
          C、192D、256

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          i是虛數(shù)單位,
          2i
          1-i
          的共軛復(fù)數(shù)為( 。
          A、-1+iB、1+i
          C、-1-iD、1-i

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知首項(xiàng)為
          1
          2
          的等比數(shù)列{an}是遞減數(shù)列,其前n項(xiàng)和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若bn=an•log2an,數(shù)列{bn}的前n項(xiàng)和Tn,求滿(mǎn)足不等式
          Tn+2
          n+2
          1
          16
          的最大n值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知復(fù)數(shù)z與(z+2)2-8i都是純虛數(shù),求復(fù)數(shù)z.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2a2lnx-x2(常數(shù)a>0).
          (1)當(dāng)a=1時(shí),求曲線y=f(x)在x=1處的切線方程;
          (2)討論函數(shù)f(x)在區(qū)間(1,e2)上零點(diǎn)的個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知四棱錐P-ABCD的底面為菱形,對(duì)角線AC與BD相交于點(diǎn)E,平面PAC垂直于底面ABCD,線段PD的中點(diǎn)為F.
          (1)求證:EF∥平面PBC;
          (2)求證:BD⊥PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          函數(shù)f(x)=xx(x>0)是一個(gè)非常簡(jiǎn)潔而重要的函數(shù),為了討論其性質(zhì),可以利用對(duì)數(shù)恒等式將其變形:xx=e lnxx.仿照該變形,研究函數(shù)φ(x)=x 
          1
          x
          (x>0)
          (Ⅰ)求φ(x)=x 
          1
          x
          (x>0)在x=1處的切線方程,并討論φ(x)=x 
          1
          x
          (x>0)的單調(diào)性.
          (Ⅱ)當(dāng)a>-1時(shí),討論關(guān)于x的方程φ′(x)=φ(x)(
          1
          x2
          -
          a
          x
          +
          a-1
          2
          )解的個(gè)數(shù),(φ′(x)是φ(x)的導(dǎo)函數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=sinx-xcosx的導(dǎo)函數(shù)為f′(x).
          (1)求證:f(x)在(0,π)上為增函數(shù);
          (2)若存在x∈(0,π),使得f′(x)>
          1
          2
          x2+λx成立,求實(shí)數(shù)λ的取值范圍;
          (3)設(shè)F(x)=f′(x)+2cosx,曲線y=F(x)上存在不同的三點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),x1<x2<x3,且x1,x2,x3∈(0,π),比較直線AB的斜率與直線BC的斜率的大小,并證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案