等差數(shù)列

的各項均為正數(shù),

,前

項和為

,

為等比數(shù)列,

,且

.
(1)求

與

;
(2)求數(shù)列

的前

項和

.
(1)

;(2)

試題分析:

(1)

的公差為

,

的公比為

,利用等比數(shù)列的通項公式和等差數(shù)列的前

項和公式,由

列出關(guān)于

的方程組,解出

的值,從而得到

與

的表達(dá)式.
(2)根據(jù)數(shù)列

的特點,可用錯位相減法求它的前

項和

,由(1)的結(jié)果知


,兩邊同乘以2得

由(1)(2)兩式兩邊分別相減,可轉(zhuǎn)化為等比數(shù)列的求和問題解決.
試題解析:(1)設(shè)

的公差為

,

的公比為

,則

為正整數(shù),

,
依題意有

,即

,
解得

或者

(舍去),
故

。 4分
(2)

。 6分

,

,
兩式相減得

8分

,
所以

12分

項和.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知等比數(shù)列

的各項均為正數(shù),且

,

.
(1)求數(shù)列

的通項公式;
(2)設(shè)

,求數(shù)列

的前

項和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
數(shù)列

,

滿足


.
(1)若

是等差數(shù)列,求證:

為等差數(shù)列;
(2)若

,求數(shù)列

的前

項和

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列{
an}中,
a1=-2 014,其前
n項和為
Sn,若

=2,則
S2 014的值等于( ).
A.-2 011 | B.-2 012 | C.-2 014 | D.-2 013 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
an}的前
n項和為
Sn,
a1=1,且對任意正整數(shù)
n,點(
an+1,
Sn)在直線3
x+2
y-3=0上.
(1)求數(shù)列{
an}的通項公式;
(2)是否存在實數(shù)
λ,使得數(shù)列

為等差數(shù)列?若存在,求出
λ的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2、a4、a6成公差為1的等差數(shù)列,則q的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知等比數(shù)列{
an}中,
a1=1,且4
a2,2
a3,
a4成等差數(shù)列,則
a2+
a3+
a4等于 ( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)等差數(shù)列

的公差

,

,若

是

與

的等比中項,則

=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若等差數(shù)列

的前n項和為S
n,且S
3=6,a
1=4,則公差d等于 ( )
A.1 | B. | C.-2 | D.3 |
查看答案和解析>>