日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù).

          1)判斷函數(shù):的單調(diào)性;

          2)對(duì)于區(qū)間上的任意不相等實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.

          【答案】1)見(jiàn)解析;(2.

          【解析】

          1)對(duì)函數(shù)求導(dǎo),解方程得正根,然后對(duì)與區(qū)間的位置關(guān)系進(jìn)行分類討論,分析導(dǎo)數(shù)的符號(hào),可得出函數(shù)在區(qū)間上的單調(diào)性;

          2)設(shè),由函數(shù)、的單調(diào)性將化為,然后構(gòu)造函數(shù),得出該函數(shù)在上單調(diào)遞減,轉(zhuǎn)化為上恒成立,利用參變量分離法得,并求出上的最小值可得出實(shí)數(shù)的取值范圍.

          1,

          ,得(舍負(fù)).

          ①當(dāng)時(shí),,

          所以在區(qū)間上的單調(diào)遞增;

          ②當(dāng)時(shí),

          .

          所以在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增.

          綜上得:①當(dāng)時(shí),在區(qū)間上的單調(diào)遞增;

          ②當(dāng)時(shí),內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;

          2)不妨設(shè),當(dāng)時(shí),,

          可化為,

          ,

          設(shè),則.

          上單調(diào)遞減,恒成立,

          上恒成立,

          ,函數(shù)在區(qū)間上單調(diào)遞增,

          ,,因此,實(shí)數(shù)的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某課題小組共10人,已知該小組外出參加交流活動(dòng)次數(shù)為12,3的人數(shù)分別為3,3 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).

          1)記“選出2人外出參加交流活動(dòng)次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

          2)設(shè)X為選出2人參加交流活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,有下列正確命題的序號(hào)是________

          (1)若m,n,則mn, (2)若

          (3)若,則; (4)若,,則

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】 如圖,在三棱錐ABCD中,CACBDADB.作BECD,E為垂足,作AHBEH.求證:AH⊥平面BCD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4—5;不等式選講.

          已知函數(shù)

          (1)的解集非空,求實(shí)數(shù)的取值范圍;

          (2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓,點(diǎn)P是曲線上的動(dòng)點(diǎn),過(guò)點(diǎn)P分別向圓N引切線為切點(diǎn))

          1)若,求切線的方程;

          2)若切線分別交y軸于點(diǎn),點(diǎn)P的橫坐標(biāo)大于2,求的面積S的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在矩形ABCD中,對(duì)角線AC分別與AB,AD所成的角為α,β,則sin2α+sin2β1,在長(zhǎng)方體ABCDA1B1C1D1中,對(duì)角線AC1與棱AB,AD,AA1所成的角分別為α1,α2,α3,與平面AC,平面AB1,平面AD1所成的角分別為β1,β2,β3,則下列說(shuō)法正確的是( 。

          sin2α1+sin2α2+sin2α31  ②sin2α1+sin2α2+sin2α32

          cos2α1+cos2α2+cos2α31  、sin2β1+sin2β2+sin2β31

          A. ①③B. ②③C. ①③④D. ②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四面體的四個(gè)頂點(diǎn)都在半徑為的球面上,是球的直徑,且,則四面體的體積為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于任意,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.

          (1)已知數(shù)列:,,“K數(shù)列,求實(shí)數(shù)的取值范圍;

          (2)設(shè)等差數(shù)列的前項(xiàng)和為,當(dāng)首項(xiàng)與公差滿足什么條件時(shí),數(shù)列“K數(shù)列”?

          (3)設(shè)數(shù)列的前項(xiàng)和為,,且,. 設(shè),是否存在實(shí)數(shù),使得數(shù)列“K數(shù)列”. 若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案