日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)y=2sin( ﹣2x),x∈[0,π])為增函數(shù)的區(qū)間是(
          A.[0, ]
          B.[ , ]
          C.[ , ]
          D.[ ,π]

          【答案】C
          【解析】解答:由y=2sin( ﹣2x)=﹣2sin(2x﹣ )其增區(qū)間可由y=2sin(2x﹣ )的減區(qū)間得到, 即2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z
          ∴kπ+ ≤x≤kπ+ ,k∈Z.
          令k=0, ≤x≤
          故選C.
          分析:先根據(jù)誘導公式進行化簡,再由復合函數(shù)的單調(diào)性可知y=﹣2sin(2x﹣ )的增區(qū)間可由y=2sin(2x﹣ )的減區(qū)間得到,再由正弦函數(shù)的單調(diào)性可求出x的范圍,最后結合函數(shù)的定義域可求得答案.
          【考點精析】利用正弦函數(shù)的單調(diào)性和函數(shù)y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1),
          (1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
          (2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對任意的x∈[1,a+1],都有f(x)≤0,求實數(shù)a的取值范圍;
          (3)若g(x)=2x+log2(x+1),且對任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=( x , 函數(shù)g(x)=log x.
          (1)若g(ax2+2x+1)的定義域為R,求實數(shù)a的取值范圍;
          (2)當x∈[( t+1 , ( t]時,求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
          (3)是否存在非負實數(shù)m,n,使得函數(shù)y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知銷售“筆記本電腦”和“臺式電腦”所得的利潤分別是P(單位:萬元)和Q(單位:萬元),它們與進貨資金t(單位:萬元)的關系有經(jīng)驗公式P= t和Q= .某商場決定投入進貨資金50萬元,全部用來購入這兩種電腦,那么該商場應如何分配進貨資金,才能使銷售電腦獲得的利潤y(單位:萬元)最大?最大利潤是多少萬元?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知分別為橢圓的上、下焦點, 是拋物線的焦點,點在第二象限的交點,且

          (1)求橢圓的方程;

          (2)與圓相切的直線交橢圓,

          若橢圓上一點滿足,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          時,求函數(shù)的單調(diào)區(qū)間;

          ,則當時,函數(shù)的圖像是否總存在直線上方?請寫出判斷過程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)= ,x∈R.
          (1)求證:對一切實數(shù)x,f(x)=f(1﹣x)恒為定值.
          (2)計算:f(﹣6)+f(﹣5)+f(﹣4)+f(﹣3)+…+f(0)+…+f(6)+f(7).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列命題正確的是(
          A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cos A<cos B的充要條件
          B.命題p:對任意的x∈R,x2+x+1>0,則¬p:對任意的x∈R,x2+x+1≤0
          C.已知p: >0,則¬p: ≤0
          D.存在實數(shù)x∈R,使sin x+cos x= 成立

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,設O是平行四邊形ABCD的兩條對角線AC,BD的交點,下列向量組:
          ;②
          ;④
          其中可作為這個平行四邊形所在平面的一組基底的是( ).

          A.①②
          B.③④
          C.①③
          D.①④

          查看答案和解析>>

          同步練習冊答案