日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設分別為線段的中點.
          (1)求橢圓的標準方程;
          (2)若為線段的中點,求
          (3)若,求證直線恒過定點,并求出定點坐標.

          (1);(2);(3)證明過程詳見解析,.

          解析試題分析:本題主要考查橢圓的標準方程和幾何性質、直線的方程、直線的斜率、中點坐標等基礎知識,考查數(shù)形結合思想,考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用左焦點坐標得右焦點坐標,然后利用定義,求得,而,得,得出結論,橢圓為;(2)先將點坐標代入橢圓,兩者作差得,而代入得,利用韋達定理求,同理求,用坐標求,用點和點斜式寫出直線方程,利用化簡,可分析過定點.
          試題解析:(1)由題意知設右焦點
                 2分

          橢圓方程為         4分
          (2)設 則  ①  ②      6分
          ② ①,可得                       8分
          (3)由題意,設
          直線,即 代入橢圓方程并化簡得

                                       10分
          同理                         11分
          時, 直線的斜率
          直線的方程為
           又 化簡得 此時直線過定點(0,)   13分
          時,直線即為軸,也過點(0,
          綜上,直線過定點.                                     14分
          考點:1.橢圓的定義;2.中點弦的解決方法.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
          (Ⅰ)求橢圓C的標準方程;
          (Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
          (1)求橢圓的標準方程;
          (2)若斜率為的直線交橢圓、兩點,且、成等差數(shù)列,點M(1,1),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經過點(1,)。
          (I)求橢圓C的方程;
          (II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知圓,圓,動圓與已知兩圓都外切.
          (1)求動圓的圓心的軌跡的方程;
          (2)直線與點的軌跡交于不同的兩點、,的中垂線與軸交于點,求點的縱坐標的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線。
          (Ⅰ)求的方程;
          (Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長是,求。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
          (Ⅰ)求的值;
          (Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          在直角坐標系中,點到兩點的距離之和等于4,設點的軌跡為,直線交于兩點.
          (1)寫出的方程;
          (2)若點在第一象限,證明當時,恒有.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓的長軸兩端點分別為,是橢圓上的動點,以為一邊在軸下方作矩形,使,于點,于點

          (Ⅰ)如圖(1),若,且為橢圓上頂點時,的面積為12,點到直線的距離為,求橢圓的方程;
          (Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

          查看答案和解析>>

          同步練習冊答案