已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率
,點(diǎn)
在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線
交橢圓
與
、
兩點(diǎn),且
、
、
成等差數(shù)列,點(diǎn)M(1,1),求
的最大值.
(1);(2)
.
解析試題分析:(1)設(shè)出橢圓標(biāo)準(zhǔn)方程,根據(jù)已知條件解出
即可;(2)由題意可知,直線
的斜率存在且不為
,故可設(shè)直線
的方程為
,A,B點(diǎn)坐標(biāo)為
,聯(lián)立直線和橢圓方程,利用韋達(dá)定理得
,然后利用直線
的斜率依次成等差數(shù)列得出
,又
,所以
,即
,然后求出弦長(zhǎng),計(jì)算三角形面積,求其最大值.
試題解析:1) 設(shè)橢圓方程為,由題意知
,…①
,…②
聯(lián)立①②解得,,所以橢圓方程為
(4分)
2) 由題意可知,直線的斜率存在且不為
,故可設(shè)直線
的方程為
滿足
,
消去得
.
,
且,.
因?yàn)橹本的斜率依次成等差數(shù)列,
所以,,即
,
又,所以
,
即. (9分)
聯(lián)立 易得弦AB的長(zhǎng)為
又點(diǎn)M到的距離
所以
平方再化簡(jiǎn)求導(dǎo)易得時(shí)S取最大值
(13分)
考點(diǎn):橢圓標(biāo)準(zhǔn)方程、橢圓的離心率、直線方程、等差數(shù)列、點(diǎn)到直線的距離公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,
為坐標(biāo)原點(diǎn),動(dòng)直線
與
拋物線交于不同兩點(diǎn)
(1)求證:·
為常數(shù);
(2)求滿足的點(diǎn)
的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,點(diǎn)分別是橢圓C:
的左、右焦點(diǎn),過(guò)點(diǎn)
作
軸的垂線,交橢圓
的上半部分于點(diǎn)
,過(guò)點(diǎn)
作
的垂線交直線
于點(diǎn)
.
(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓
的方程;
(2)試判斷直線與橢圓
的公共點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心為直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在s軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點(diǎn)為圓心、橢圓
的短半軸長(zhǎng)為半徑的圓
相切.
(1)求橢圓的方程;
(2)如圖,、
、
是橢圓
的頂點(diǎn),
是橢圓
上除頂點(diǎn)外的任意點(diǎn),直線
交
軸于點(diǎn)
,直線
交
于點(diǎn)
,設(shè)
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦瞇分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,
)在橢圓C上.
(I)求橢圓C的方程;
(II)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且的面積為
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知左焦點(diǎn)為的橢圓過(guò)點(diǎn)
.過(guò)點(diǎn)
分別作斜率為
的橢圓的動(dòng)弦
,設(shè)
分別為線段
的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段
的中點(diǎn),求
;
(3)若,求證直線
恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)為
,過(guò)
任作直線
(
與
軸不平行)交拋物線分別于
兩點(diǎn),點(diǎn)
關(guān)于
軸對(duì)稱(chēng)點(diǎn)為
,
(1)求證:直線與
軸交點(diǎn)
必為定點(diǎn);
(2)過(guò)分別作拋物線的切線,兩條切線交于
,求
的最小值,并求當(dāng)
取最小值時(shí)直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com