(本小題滿分12分)已知圓,圓
,動圓
與圓
外切并且與圓
內(nèi)切,圓心
的軌跡為曲線
。
(Ⅰ)求的方程;
(Ⅱ)是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點(diǎn),當(dāng)圓
的半徑最長是,求
。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線:
.過點(diǎn)
的直線
交
于
兩點(diǎn).拋物線
在點(diǎn)
處的切線與在點(diǎn)
處的切線交于點(diǎn)
.
(Ⅰ)若直線的斜率為1,求
;
(Ⅱ)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點(diǎn)為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)如圖,、
、
是橢圓
的頂點(diǎn),
是橢圓
上除頂點(diǎn)外的任意點(diǎn),直線
交
軸于點(diǎn)
,直線
交
于點(diǎn)
,設(shè)
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為
,其準(zhǔn)線與
軸的交點(diǎn)為
,過
點(diǎn)的直線
交拋物線于
兩點(diǎn).
(1)若直線的斜率為
,求證:
;
(2)設(shè)直線的斜率分別為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知左焦點(diǎn)為的橢圓過點(diǎn)
.過點(diǎn)
分別作斜率為
的橢圓的動弦
,設(shè)
分別為線段
的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為線段
的中點(diǎn),求
;
(3)若,求證直線
恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點(diǎn)為F
過點(diǎn)
的直線交拋物線于A
,B
兩點(diǎn),直線AF,BF分別與拋物線交于點(diǎn)M,N
(1)求的值;
(2)記直線MN的斜率為,直線AB的斜率為
證明:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的左焦點(diǎn)為
,右焦點(diǎn)為
.
(Ⅰ)設(shè)直線過點(diǎn)
且垂直于橢圓的長軸,動直線
垂直
于點(diǎn)P,線段
的垂直平分線交
于點(diǎn)M,求點(diǎn)M的軌跡
的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線
上不同于
的點(diǎn)
,以
為直徑作圓與
相交另外一點(diǎn)
,求該圓的面積最小時點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(
)右頂點(diǎn)與右焦點(diǎn)的距離為
,短軸長為
.
(I)求橢圓的方程;
(II)過左焦點(diǎn)的直線與橢圓分別交于
、
兩點(diǎn),若三角形
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的上、下頂點(diǎn)分別為
,點(diǎn)
在橢圓上,且異于點(diǎn)
,直線
與直線
分別交于點(diǎn)
,
(Ⅰ)設(shè)直線的斜率分別為
,求證:
為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動時,以
為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com