如圖,在三棱錐中,
,
,
,點(diǎn)
、
、
分別為
、
、
的中點(diǎn).
(1)求直線與平面
所成角的正弦值;
(2)求二面角的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD的直觀圖(如圖(1))及左視圖(如圖(2)),底面ABCD是邊長(zhǎng)為2的正方形,平面PAB⊥平面ABCD,PA=PB。
(1)求證:AD⊥PB;
(2)求異面直線PD與AB所成角的余弦值;
(3)求平面PAB與平面PCD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖四棱錐E—ABCD中,底面ABCD是平行四邊形!螦BC=45°,BE=BC= EA=EC=6,M為EC中點(diǎn),平面BCE⊥平面ACE,AE⊥EB
(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知菱形所在平面與直角梯形
所在平面互相垂直,
,
點(diǎn)
,
分別是線段
,
的中點(diǎn).
(I)求證:平面
平面
;
(Ⅱ)點(diǎn)在直線
上,且
//平面
,求平面
與平面
所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為正方形
的中心,四邊形
是平行四邊形,且平面
平面
,若
.
(1)求證:平面
.
(2)線段上是否存在一點(diǎn)
,使
平面
?若存在,求
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且.證明:平面PAD⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。
(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com