日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,橢圓截直線(xiàn)所得的線(xiàn)段的長(zhǎng)度為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.

          【答案】(Ⅰ)(Ⅱ)見(jiàn)解析

          【解析】

          )根據(jù)橢圓截直線(xiàn)所得的線(xiàn)段的長(zhǎng)度為,可得橢圓過(guò)點(diǎn) ,結(jié)合離心率即可求得橢圓方程;

          (Ⅱ)分類(lèi)討論:當(dāng)直線(xiàn)的斜率不存在時(shí),四邊形的面積為 ; 當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)出直線(xiàn)方程,與橢圓方程聯(lián)立,由 ,代入曲線(xiàn)C,整理出k,m的等量關(guān)系式,再根據(jù) 寫(xiě)出面積的表達(dá)式整理即可得到定值。

          (Ⅰ)由解得

          得橢圓的方程為.

          (Ⅱ)當(dāng)直線(xiàn)的斜率不存在時(shí),直線(xiàn)的方程為,

          此時(shí)四邊形的面積為

          當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)方程是,聯(lián)立橢圓方程

          點(diǎn)到直線(xiàn)的距離是

          因?yàn)辄c(diǎn)在曲線(xiàn)上,所以有

          整理得

          由題意四邊形為平行四邊形,所以四邊形的面積為

          , 故四邊形的面積是定值,其定值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓經(jīng)過(guò)點(diǎn),右焦點(diǎn)到直線(xiàn)的距離為3

          1)求橢圓E的標(biāo)準(zhǔn)方程;

          2)過(guò)點(diǎn)A作兩條互相垂直的直線(xiàn),分別交橢圓于M,N兩點(diǎn),求證:直線(xiàn)MN恒過(guò)定點(diǎn)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),其中.

          1)當(dāng)時(shí),求函數(shù)處的切線(xiàn)方程;

          2)記函數(shù)的導(dǎo)函數(shù)是,若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

          3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年雙11當(dāng)天,某購(gòu)物平臺(tái)的銷(xiāo)售業(yè)績(jī)高達(dá)2135億人民幣.與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.

          (1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

          對(duì)服務(wù)好評(píng)

          對(duì)服務(wù)不滿(mǎn)意

          合計(jì)

          對(duì)商品好評(píng)

          140

          對(duì)商品不滿(mǎn)意

          10

          合計(jì)

          200

          (2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為X.

          ①求隨機(jī)變量X的分布列;

          ②求X的數(shù)學(xué)期望和方差.

          附:,其中n=a+b+c+d.

          P(K2≥k)

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面為正方形,底面,為線(xiàn)段的中點(diǎn).

          1)若為線(xiàn)段上的動(dòng)點(diǎn),證明:平面平面;

          2)若為線(xiàn)段,上的動(dòng)點(diǎn)(不含),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,三棱錐中,平面平面為等邊三角形,的中點(diǎn).

          1)求證:;

          2)若為線(xiàn)段上一點(diǎn),且,求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知曲線(xiàn)上任意一點(diǎn)滿(mǎn)足,直線(xiàn)的方程為,且與曲線(xiàn)交于不同兩點(diǎn),.

          1)求曲線(xiàn)的方程;

          2)設(shè)點(diǎn),直線(xiàn)的斜率分別為,,且,判斷直線(xiàn)是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ABEDCF和一個(gè)四棱錐PABCD組合而成,其中EFEAEB2,AEEBPAPD,平面PAD∥平面EBCF

          1)證明:平面PBC∥平面AEFD;

          2)求直線(xiàn)AP與平面PCD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知三棱柱的側(cè)棱垂直于底面,,,點(diǎn)分別是的中點(diǎn).

          1)證明:平面;

          2)設(shè),當(dāng)為何值時(shí),平面,試證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案