【題目】已知橢圓經(jīng)過點
,右焦點到直線
的距離為3.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點A作兩條互相垂直的直線,
分別交橢圓于M,N兩點,求證:直線MN恒過定點
.
【答案】(1)(2)見解析
【解析】
(1)由題可知值,由右焦點到直線
的距離為3表示
,和
構(gòu)建方程組,求得
,即可求得橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)直線的方程為
,聯(lián)立直線方程與橢圓方程,即可表示點M的坐標(biāo),由
,
垂直,則將M坐標(biāo)中的k換成
,即可表示N點坐標(biāo),再利用兩點坐標(biāo)分別表示
與
,觀察即可證明.
(1)由題意知,,
,
,
解得,
,
.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)顯然直線,
的斜率存在.
設(shè)直線的方程為
,
聯(lián)立方程組,得
,
解得,
,
所以,
.
由,
垂直,可得直線
的方程為
.
用替換前式中的k,可得
,
.
則,
,
所以,故直線MN恒過定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,a1=1,a2=,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*,記T2n為數(shù)列{an}的前2n項和,數(shù)列{bn}是首項和公比都是2的等比數(shù)列,則使不等式
·
<1成立的最小整數(shù)n為( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體外接球的表面積是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點
,右焦點到直線
的距離為3.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點A作兩條互相垂直的直線,
分別交橢圓于M,N兩點,求證:直線MN恒過定點
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為2的菱形中,
,將
沿對角線
折起到
的位置,使平面
平面
,
是
的中點,
⊥平面
,且
,如圖2.
(1)求證:平面
;
(2)求平面與平面
所成角的余弦值;
(3)在線段上是否存在一點
,使得
⊥平面
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設(shè)計如圖所示,AB為地面,CD,CE為路燈燈桿,CD⊥AB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=
.已知CD=4m,CE=2m.
(1)當(dāng)M,D重合時,求路燈在路面的照明寬度MN;
(2)求此路燈在路面上的照明寬度MN的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓
截直線
所得的線段的長度為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
交于
兩點,點
是橢圓
上的點,
是坐標(biāo)原點,若
,判定四邊形
的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com