【題目】如圖,三棱錐中,平面
平面
,
為等邊三角形,
,
是
的中點.
(1)求證:;
(2)若,
為線段
上一點,且
,求二面角
的大。
【答案】(1)見解析(2)
【解析】
(1)取的中點為
,連結(jié)
,
,證明
平面
得到答案.
(2)如圖,以為原點建立空間直角坐標(biāo)系
,平面
的法向量為
,平面
的一個法向量為
,計算得到答案.
(1)取的中點為
,連結(jié)
,
,
在等邊三角形中,有
,
由是
的中點,
是
的中位線,所以
,
因為,所以
,又
,所以
平面
,
因為平面
,所以
.
(2)因為平面平面
,平面
平面
,
,
所以平面
,
如圖,以為原點建立空間直角坐標(biāo)系
,
不妨設(shè),所以
,
,
則,
,
,
,
,
,
,
,
,
設(shè)平面的法向量為
,由
,得
,
取平面的一個法向量為
,
設(shè)平面的法向量為
,由
,得
,
取平面的一個法向量為
,
,由
得,
,
所以二面角的大小為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex﹣2x+1.
(1)當(dāng)a=1時,求函數(shù)f(x)的極值;
(2)若f(x)>0對x∈R成立,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個長方形木塊,三個側(cè)面積分別為8,12,24,現(xiàn)將其削成一個正四面體模型,則該正四面體模型棱長的最大值為( )
A.2B.C.4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓
截直線
所得的線段的長度為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
交于
兩點,點
是橢圓
上的點,
是坐標(biāo)原點,若
,判定四邊形
的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系
的原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,橢圓
的極坐標(biāo)方程為
.
(1)求直線的普通方程(寫成一般式)和橢圓
的直角坐標(biāo)方程(寫成標(biāo)準(zhǔn)方程);
(2)若直線與橢圓
相交于
,
兩點,且與
軸相交于點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓(a>0,b>0)的左右焦點分別為F1,F2,與y軸正半軸交于點B,若△BF1F2為等腰直角三角形,且直線BF1被圓x2+y2=b2所截得的弦長為2,
(1)求橢圓的方程;
(2)直線l:y=kx+m與橢圓交于點A,C,線段AC的中點為M,射線MO與橢圓交于點P,點O為△PAC的重心,求證:△PAC的面積S為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式
的解集為
,求函數(shù)
的最小值;
(2)是否存在實數(shù),使得對任意
,存在
,不等式
成立?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com