【題目】如圖所示,在四棱錐中,
,
平面PAB,
,E為線段PB的中點
(1)證明:平面PDC;
(2)求直線DE與平面PDC所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)利用平行四邊形,得到線線平行,從而證明線面平行。
(2)建立適當(dāng)?shù)目臻g直角坐標系,利用法向量求解。
證明:(1)如圖所示,取PC的中點F,連接DF,EF,因為E為線段PB的中點,
∴,且
,
∵,∴
∴四邊形EFDA為平行四邊形
∴,又
平面PDC,
平面PDC,
∴平面PDC
(2)(方法一)∵,
平面PAB,
平面PAB,
由題意知為等邊三角形,
以A為坐標原點,如圖建系
,
,
,
,
,
,
,
,
設(shè)平面PDC的法向量為,則
令,則
設(shè)直線DE與平面PDC所成角為,
即直線DE與平面PDC所成角的正弦值為
(方法二)∵為等邊三角形,E為線段PB的中點,∴
∵平面PAB,∴
,
,
平面PBC,
∵,
平面PBC,
平面PDC,平面
平面PBC
過E點作于H,連接DH,則
平面PDC,
∴即為直線DE與平面PDC所成角,易得
,
,
在中,
∴直線DE與平面PDC所成角的正弦值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的右焦點為
,離心率為
,
是橢圓
上位于第一象限內(nèi)的任意一點,
為坐標原點,
關(guān)于
的對稱點為
,
,圓
:
.
(1)求橢圓和圓
的標準方程;
(2)過點作
與圓
相切于點
,使得點
,點
在
的兩側(cè).求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為平行四邊形,平面
平面
,
是邊長為4的等邊三角形,
,
是
的中點.
(1)求證:;
(2)若直線與平面
所成角的正弦值為
,求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如表(單位:輛):
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標準型 | 300 | 450 | 600 |
按分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論
的單調(diào)性;
(2)若,且對于函數(shù)
的圖象上兩點
,
,存在
,使得函數(shù)
的圖象在
處的切線
.求證;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中
為頂點,
為底面圓心)的側(cè)面積與底面積的比是
,則圓錐
與它的外接球(即頂點在球面上且底面圓周也在球面上)的體積比為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單位正方體中,點
在線段
上運動,給出以下三個命題:
①三棱錐的體積為定值; ②二面角
的大小為定值;
③異面直線與直線
所成的角為定值;
其中真命題有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復(fù)興中學(xué)一年一度的校運會正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運會出一份力。小智同學(xué)則通過對學(xué)校有關(guān)部門的走訪,隨機地統(tǒng)計了過去許多年中的五個年份的校運會“參與”人數(shù)及相關(guān)數(shù)據(jù),并進行分析,希望能為運動會組織者科學(xué)地安排提供參考。
附:①過去許多年來學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運動員和志愿者,其余同學(xué)均為“啦啦隊員”,不計入其中;③用數(shù)字1、2、3、4、5表示小智同學(xué)統(tǒng)計的五個年份的年份數(shù),今年的年份數(shù)是6;
統(tǒng)計表(一)
年份數(shù)x | 1 | 2 | 3 | 4 | 5 |
“參與”人數(shù)(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
統(tǒng)計表(二)
高一(3)(4)班參加羽毛球比賽的情況:
男生 | 女生 | 小計 | |
參加(人數(shù)) | 26 | b | 50 |
不參加(人數(shù)) | c | 20 | |
小計 | 44 | 100 |
(1)請你與小智同學(xué)一起根據(jù)統(tǒng)計表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運會的“參與”人數(shù);
(2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運會的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對今年校運會的“參與”人數(shù)的預(yù)估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率。現(xiàn)從過去許多年中隨機抽取9年來研究,記這9年中“體活躍年”的個數(shù)為隨機變量,試求隨機變量
的分布列、期望
和方差
;
(3)根據(jù)統(tǒng)計表(二),請問:你能否有超過60%的把握認為“羽毛球運動”與“性別”有關(guān)?
參考公式和數(shù)據(jù)一:,
,
,
參考公式二:,其中
.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD中,以D為原點建立空間直角坐標系,E為B
的中點,F(xiàn)為
的中點,則下列向量中,能作為平面AEF的法向量的是( )
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com