(本小題滿分12分)已知:,證明:
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設(shè)a為實數(shù),函數(shù)
(I)求的單調(diào)區(qū)間與極值;
(II)求證:當時,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 已知為實數(shù),
,
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求
在[-2,2] 上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)已知函數(shù),曲線
過點P(-1,2),且在點P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在上是增函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程
在區(qū)間
內(nèi)恰有兩個相異的實根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)
設(shè)函數(shù),且
,其中
是自然對數(shù)的底數(shù).
(1)求與
的關(guān)系;
(2)若在其定義域內(nèi)為單調(diào)函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一點
,使得
>
成立,求實數(shù)
的
取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com