日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=ln xx2-(a+1)x(a>0,a為常數(shù)).
          (1)討論f(x)的單調(diào)性;
          (2)若a=1,證明:當(dāng)x>1時,f(x)< x2.

          (1) 在,(1,+∞)上單調(diào)遞增,在上單調(diào)遞減(2)見解析

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)當(dāng)a=2時,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
          (2)判斷函數(shù)f(x)的單調(diào)性;
          (3)求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)時都取得極值.
          (1)求的值及的極大值與極小值;
          (2)若方程有三個互異的實根,求的取值范圍;
          (3)若對,不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知
          (1)若存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;
          (2)若,求證:當(dāng)時,恒成立;
          (3)利用(2)的結(jié)論證明:若,則.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          定義在R上的函數(shù)同時滿足以下條件:
          在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
          是偶函數(shù);
          在x=0處的切線與直線y=x+2垂直.
          (1)求函數(shù)的解析式;
          (2)設(shè)g(x)=,若存在實數(shù)x∈[1,e],使g(x)<,求實數(shù)m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.
          (1)求a
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)若直線yb與函數(shù)yf(x)的圖象有3個交點,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),, 
          (1)若,求曲線處的切線方程;
          (2)若對任意的,都有恒成立,求的最小值;
          (3)設(shè),,若,為曲線的兩個不同點,滿足,且,使得曲線處的切線與直線AB平行,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)f(x)=x3x2+6xa.
          (1)對于任意實數(shù)x,f′(x)≥m恒成立,求m的最大值;
          (2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
          (2)當(dāng)時,若恒成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案