【題目】已知橢圓經(jīng)過點
,離心率為
,左、右焦點分別為
,
.
(1)求橢圓的方程;
(2)若直線:
與橢圓交于
,
兩點,與以
為直徑的圓交于
,
兩點,且滿足
,求直線
的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是雙曲線
的左、右焦點,過點
作垂直與
軸的直線交雙曲線于
,
兩點,若
為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線的通徑求得點的坐標,將三角形
為銳角三角形,轉化為
,即
,將表達式轉化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線的通徑可知,由于三角形
為銳角三角形,結合雙曲線的對稱性可知
,故
,即
,即
,解得
,故離心率的取值范圍是
.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉化為
,利用
列不等式,再將不等式轉化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結束】
17
【題目】已知命題:方程
有兩個不相等的實數(shù)根;命題
:不等式
的解集為
.若
或
為真,
為假,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某市主辦的科技知識競賽的學生成績中隨機選取了40名學生的成績作為樣本,已知這些成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組
;
;第六組
,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績在區(qū)間
內(nèi)的學生人數(shù);
估計這40名學生成績的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數(shù)a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(Ⅰ)求橢圓的方程.
(Ⅱ)若,
是橢圓
上兩個不同的動點,且使
的角平分線垂直于
軸,試判斷直線
的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{}是等差數(shù)列,數(shù)列{
}的前
項和
滿足
,
,且
(1)求數(shù)列{}和{
}的通項公式:
(2)設為數(shù)列{
.
}的前
項和,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的方程為
,拋物線
:
的焦點為
,點
是拋物線
上到直線
距離最小的點.
(1)求點的坐標;
(2)若直線與拋物線
交于
兩點,
為
中點,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com