【題目】函數(shù)的定義域?yàn)?/span>
(
).
(1)當(dāng)時(shí),求函數(shù)
的值域;
(2)若函數(shù)在定義域上是減函數(shù),求
的取值范圍;
(3)求函數(shù)在定義域上的最大值及最小值,并求出函數(shù)取最值時(shí)
的值.
【答案】(1);(2)
;(3)見(jiàn)解析
【解析】試題分析:(1)當(dāng)時(shí),
,
由均值不等式或鉤形函數(shù)圖像可求得函數(shù)值域。(2)由減函數(shù)的定義證明法來(lái)求參數(shù)的范圍。(3)由于a的取值不同,函數(shù)的單調(diào)性有變化,所以根據(jù)單調(diào)性來(lái)討論函數(shù)的值域,分
和
和
討論函數(shù)值域。
試題解析:(1)函數(shù),所以函數(shù)
的值域?yàn)?/span>
(2)若函數(shù)在定義域上是減函數(shù),則任取
且
都有
成立,即
,只要
即可,由
,故
, 所以
,故
的取值范圍是
;
(3)當(dāng)時(shí),函數(shù)
在
上單調(diào)增,無(wú)最小值, 當(dāng)
時(shí)取得最大值
;由(2)得當(dāng)
時(shí),
在
上單調(diào)減,無(wú)最大值, 當(dāng)
時(shí)取得最小值
; 當(dāng)
時(shí),函數(shù)
在
上單調(diào)減,在
上單調(diào)增,無(wú)最大值,當(dāng)
時(shí)取得最小值
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
是菱形,
是
的中點(diǎn),點(diǎn)
在側(cè)棱
上.
(1)求證:平面
;
(2)若是
的中點(diǎn),求證:
平面
;
(3)若,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△OAB中,頂點(diǎn)A的坐標(biāo)是(3,0),頂點(diǎn)B的坐標(biāo)是(1,2),記△OAB位于直線左側(cè)圖形的面積為f(t).
(1)求函數(shù)f(t)的解析式;
(2)設(shè)函數(shù),求函數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合,若
是
的子集,把
中的所有數(shù)的和稱為
的“容量”(規(guī)定空集的容量為0),若
的容量為奇(偶)數(shù),則稱
為
的奇(偶)子集,命題①:
的奇子集與偶子集個(gè)數(shù)相等;命題②:當(dāng)
時(shí),
的所有奇子集的容量之和與所有偶子集的容量之和相等,則下列說(shuō)法正確的是( )
A.命題①和命題②都成立B.命題①和命題②都不成立
C.命題①成立,命題②不成立D.命題①不成立,命題②成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù);
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,且
恒成立,求
的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中
,
.
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(2)若函數(shù)僅在
處有極值,求
的取值范圍;
(3)若對(duì)于任意的,不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,bsinA=cosB.
(1)求角B的大;
(2)若b=2,△ABC的面積為,求a,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)滿足
,且
、
時(shí),
成立,若
對(duì)
恒成立.
(1)判斷的單調(diào)性和對(duì)稱性;
(2)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com