【題目】如圖,四邊形與
均為菱形,
,且
.
(1)求證: 平面
;
(2)求直線與平面
所成角的正弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)根據(jù)菱形性質(zhì)得,設(shè)
與
相交于點(diǎn)
,由等腰三角形性質(zhì)得
,再根據(jù)線面垂直判定定理得
平面
;(2)先證明
平面
,再建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解出平面法向量。利用向量數(shù)量積求出向量夾角,最后根據(jù)向量夾角與線面角互余關(guān)系確定直線
與平面
所成角的正弦值.
試題解析:(1)設(shè)與
相交于點(diǎn)
,連接
,
∵四邊形為菱形,∴
,且
為
中點(diǎn),
∵,∴
,
又,∴
平面
.
(2)連接,∵四邊形
為菱形,且
,∴
為等邊三角形,
∵為
中點(diǎn),∴
,又
,∴
平面
.
∵兩兩垂直,∴建立空間直角坐標(biāo)系
,如圖所示,
設(shè),∵四邊形
為菱形,
,∴
.
∵為等邊三角形,∴
.
∴,
∴.
設(shè)平面的法向量為
,則
,
取,得
.
設(shè)直線與平面
所成角為
,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(2,﹣3),
=(﹣5,4),
=(1﹣λ,3λ+2).
(1)若△ABC為直角三角形,且∠B為直角,求實(shí)數(shù)λ的值;
(2)若點(diǎn)A、B、C能構(gòu)成三角形,求實(shí)數(shù)λ應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某個(gè)四面體的三視圖,則該四面體的表面積為( )
A.8+8 +4
B.8+8 +2
C.2+2 +
D. +
+
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間及極值;
(3)對(duì),
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}中,a1=1,an , an+1是方程x2﹣(2n+1)x+ 的兩個(gè)根,則數(shù)列{bn}的前n項(xiàng)和Sn=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)
,傾斜角為
.在以原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
的方程為
.
(1)寫出直線的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)直線與曲線
相交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(其中
,
),且函數(shù)
的圖象在點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(1)求實(shí)數(shù),
的值;
(2)記函數(shù),是否存在最小的正常數(shù)
,使得當(dāng)
時(shí),對(duì)于任意正實(shí)數(shù)
,不等式
恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=n2﹣n,數(shù)列{bn}的前n項(xiàng)和Tn=4﹣bn .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn= anbn , 求數(shù)列{cn}的前n項(xiàng)和Rn的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直三棱柱中,
,
為
的中點(diǎn),
為
的中點(diǎn).
(1)求證: 面
;
(2)若面
,求二面角
的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com