日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,,
          ,設(shè)AE與平面ABC所成的角為,且,
          四邊形DCBE為平行四邊形,DC平面ABC.
          (1)求三棱錐C-ABE的體積;
          (2)證明:平面ACD平面ADE;
          (3)在CD上是否存在一點(diǎn)M,使得MO//平面ADE?證明你的結(jié)論.
           
          解:(1)∵四邊形DCBE為平行四邊形 ∴
          ∵ DC平面ABC        ∴平面ABC
          為AE與平面ABC所成的角,
          --------------------2分
          在Rt△ABE中,由,
          ------------3分
          ∵AB是圓O的直徑 ∴

                ∴---------------------------------------4分
           ------------------5分
          (2)證明:∵ DC平面ABC ,平面ABC  ∴. -------------6分
               ∴平面ADC. 
          ∵DE//BC  ∴平面ADC  -------------------------------------8分
          又∵平面ADE  ∴平面ACD平面--------9分
          (3)在CD上存在點(diǎn),使得MO∥平面,該點(diǎn)的中點(diǎn).------10分  
          證明如下:
          如圖,取的中點(diǎn),連MO、MN、NO,
          ∵M(jìn)、N、O分別為CD、BE、AB的中點(diǎn),
          ∴.      ----------------------------------------------11分
          平面ADE,平面ADE,
           -----------------------------------------------12分
          同理可得NO//平面ADE.
          ,∴平面MNO//平面ADE.      --------------------13分
          平面MNO,∴MO//平面ADE.  -------------14分(其它證法請(qǐng)參照給分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
          (I)證明:AB1⊥BC1;
          (II)求點(diǎn)B到平面AB1C1的距離;
          (III)求二面角C1—AB1—A1的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題12分)如圖,四棱柱ABCD—ABCD中,AD平面ABCD,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱AA=2.
          (1)求證:CD∥平面ABBA;
          (2)求直線BD與平面ACD所成角的正弦值;
          (3)求二面角D—AC一A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知平面是正三角形,。

          (Ⅰ)求異面直線所成角的余弦值;
          (Ⅱ)求證:平面平面;
          (Ⅲ)求二面角的余弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (13分)如圖,已知正三棱柱的底面正三角形的邊長(zhǎng)是2,D是的中點(diǎn),直線與側(cè)面所成的角是.

          ⑴求二面角的大。
          ⑵求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (10分)在四棱錐P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD,

          PA=2AB
          (1)求證:平面PAC⊥平面PBD
          (2)求二面角B—PC—D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          在北緯45°的緯線圈上有兩地,分別在東經(jīng)70°與東經(jīng)160°的經(jīng)線上,設(shè)地球半徑為 則兩地的球面距離等于(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知下列命題(表示直線,表示平面):
          ① 若;② 若;
          ③ 若;④ 若
          其中不正確的命題的序號(hào)是.(將所有不正確的命題的序號(hào)都寫上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,直三棱柱中,,的中點(diǎn),上的一點(diǎn),

          (Ⅰ)證明:為異面直線的公垂線;
          (Ⅱ)設(shè)異面直線的夾角為45°,求二面角的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案