日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ex+2x2-3x
          (1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
          (2)當(dāng)x≥1時,若關(guān)于x的不等式f(x)≥ax恒成立,求實(shí)數(shù)a的取值范圍;
          (3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,
          e
          ≈1.6,e0.3≈1.3).
          考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
          專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
          分析:(1)求導(dǎo)數(shù),可得切線斜率,求出切點(diǎn)的坐標(biāo),即可得出切線方程;
          (2)分離參數(shù),構(gòu)造函數(shù)求最值,即可求實(shí)數(shù)a的取值范圍;
          (3)證明f'(0)•f'(1)<0,f'(x)在[0,1]上單調(diào)遞增,可得f'(x)在[0,1]上存在唯一零點(diǎn),f(x)在[0,1]上存在唯一的極值點(diǎn),再利用二分法求出x的近似值.
          解答: 解:(1)∵f(x)=ex+2x2-3x,
          ∴f′(x)=ex+4x-3,
          ∴f′(1)=e+1,
          ∵f(1)=e-1,
          ∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y-e+1=(e+1)(x-1),即(e+1)x-y-2=0;
          (2)x≥1時,不等式f(x)≥ax,可得a≤
          ex+2x2-3x
          x

          令g(x)=
          ex+2x2-3x
          x
          ,∴g′(x)=
          (x-1)ex+2x2
          x2
          ,
          ∵x≥1,∴g′(x)>0,
          ∴g(x)在[1,+∞)上是增函數(shù),
          ∴g(x)min=g(1)=e-1,
          ∴a≤e-1;
          (3)∵f'(0)=e0-3=-2<0,f'(1)=e+1>0,
          ∴f'(0)•f'(1)<0
          令h(x)=f'(x)=ex+4x-3,
          則h'(x)=ex+4>0,f'(x)在[0,1]上單調(diào)遞增,
          ∴f'(x)在[0,1]上存在唯一零點(diǎn),f(x)在[0,1]上存在唯一的極值點(diǎn).
          取區(qū)間[0,1]作為起始區(qū)間,用二分法逐次計算如下

          由上表可知區(qū)間[0.3,0.6]的長度為0.3,所以該區(qū)間的中點(diǎn)x2=0.45,到區(qū)間端點(diǎn)的距離小于0.2,因此可作為誤差不超過0.2一個極值點(diǎn)的相應(yīng)x的值
          ∴函數(shù)y=f(x)取得極值時,相應(yīng)x≈0.45.
          點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的最值與零點(diǎn),正確分離參數(shù)求最值是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若f(x)在R上可導(dǎo),f(x)=x2+2f′(2)x+3,則
          3
          0
          f(x)dx( 。
          A、16B、-18
          C、-24D、54

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          以下關(guān)于算法的說法正確的是(  )
          A、描述算法可以有不同的方式,可用形式語言也可用其它語言
          B、算法可以看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列只能解決當(dāng)前問題
          C、算法過程要一步一步執(zhí)行,每一步執(zhí)行的操作必須確切,不能含混不清,而且經(jīng)過有限步或無限步后能得出結(jié)果
          D、算法要求按部就班地做,每一步可以有不同的結(jié)果

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中三條邊a,b,c成等比數(shù)列,且b=
          3
          ,B=
          π
          3
          ,則△ABC的面積為( 。
          A、
          3
          2
          B、
          3
          4
          C、
          3
          4
          D、
          3
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩直線l1:3x-4y+7=0和l2:x=-1,點(diǎn)P在拋物線y2=4x上運(yùn)動,則點(diǎn)P到直線l,和l2的距離之和的最小值是( 。
          A、2
          B、
          11
          5
          C、
          12
          5
          D、3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
          API [0,50] (50,100] (100,150] (150,200] (200,250] (250,300] >300
          空氣質(zhì)量 優(yōu) 輕微污染 輕度污染 中度污染 中度重污染 重度污染
          天數(shù) 4 13 18 30 9 11 15
          記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元),空氣質(zhì)量指數(shù)API為ω.在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API為150時造成的 經(jīng)濟(jì)損失為500元,當(dāng)API為200時,造成的經(jīng)濟(jì)損失為700元);當(dāng)API大于300時造成的 經(jīng)濟(jì)損失為2000元;
          (1)試寫出是S(ω)的表達(dá)式:
          (2)試估計在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過600元的概率;
          (3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
          附:
          P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
          k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
          K2=
          m(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)

          非重度污染 重度污染 合計
          供暖季
          非供暖季
          合計 100

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          △ABC中,角A、B、C的對邊分別為a、b、c.向量
          m
          =(cosA,cosB)與向量
          n
          =(a,2c-b)共線.
          (Ⅰ)求角A的大。
          (Ⅱ)設(shè)等比數(shù)列{an}中,a1cosA=1,a4=16,記bn=log2an•log2an+1,求{
          1
          bn
          }的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,且a2-(b-c)2=(2-
          3
          )bc,sinAsinB=cos2
          C
          2

          (1)求角A和角B的大;
          (2)若f(x)=sin(2x+C),將函數(shù)y=f(x)的圖象向右平移
          π
          12
          個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知i是虛數(shù)單位,a∈R,若復(fù)數(shù)
          a+i
          1-i
          的實(shí)部是-1,則a=
           

          查看答案和解析>>

          同步練習(xí)冊答案