日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且f(x)=-f(x+2),當(dāng)0≤x≤2時,f(x)=
          x
          2
          ,若已知n∈Z,則使f(x)=-
          1
          2
          成立的x的值為(  )
          分析:先根據(jù)題目條件求出函數(shù)的周期,然后根據(jù)函數(shù)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),當(dāng)0≤x≤2時,f(x)=
          x
          2
          ,求出一個滿足條件的x,然后根據(jù)周期性可求出所求滿足條件的x.
          解答:解:∵f(x)=-f(x+2),
          ∴f(x+4)=-f(x+2)=f(x)即函數(shù)f(x)的周期為4
          ∵函數(shù)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),當(dāng)0≤x≤2時,f(x)=
          x
          2
          ,
          ∴f(-1)=-f(1)=-
          1
          2
          即當(dāng)x=-1時使f(x)=-
          1
          2
          成立
          而周期4,則x=4n-1時使f(x)=-
          1
          2
          成立
          故選D.
          點(diǎn)評:本題主要考查了函數(shù)的周期性,以及函數(shù)的奇偶性,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
          3
          2
          ,0)時
          ,f(x)=log2(-3x+1),則f(2011)=( 。
          A、-2
          B、2
          C、4
          D、log27

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在N*的函數(shù),且滿足f(f(k))=3k,f(1)=2,設(shè)an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
          (I)求bn的表達(dá)式;
          (II)求證:
          b1
          f(a1)
          +
          b2
          f(a2) 
          +…+
          bn
          f(an)
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實(shí)數(shù)x的取值范圍為
          (0,1]
          (0,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•臨沂二模)已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當(dāng)x∈[-e,0)時,f(x)=ax-ln(-x),(a<0,a∈R)
          (I)求f(x)的解析式;
          (Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,e]時f(x)的最大值是-3,如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          注:此題選A題考生做①②小題,選B題考生做①③小題.
          已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時有f(x)=
          4xx+4

          ①求f(x)的解析式;
          ②(選A題考生做)求f(x)的值域;
          ③(選B題考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案