【題目】已知函數(shù),
,
為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),證明:
,
;
(2)若函數(shù)在
上存在兩個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)先求導(dǎo),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性從而得證;
(2)先求導(dǎo)數(shù),再討論當(dāng)
時(shí),當(dāng)
時(shí),函數(shù)的單調(diào)性及極值情況,再求解即可.
(1)當(dāng)時(shí),
,則
,
當(dāng)時(shí),
,則
,又因?yàn)?/span>
,
所以當(dāng)時(shí),
,僅
時(shí),
,
所以在
上是單調(diào)遞減,所以
,即
.
(2),因?yàn)?/span>
,所以
,
,
①當(dāng)時(shí),
恒成立,所以
在
上單調(diào)遞增,沒有極值點(diǎn).
②當(dāng)時(shí),
,令
,
則在
上單調(diào)遞減,因?yàn)?/span>
,
,
當(dāng),即
時(shí),
,
,
所以在
上單調(diào)遞增,
,
,
所以,
,即
,所以
單調(diào)遞減,無極值點(diǎn);
當(dāng),即
時(shí),存在
,使
,
當(dāng)時(shí),
,當(dāng)
時(shí),
,
所以在
單調(diào)遞增,在
單調(diào)遞減,
在
處取極大值,
因?yàn)?/span>,所以
,又因?yàn)?/span>
,
,
若存在兩個(gè)極值點(diǎn),即
存在兩個(gè)變號(hào)零點(diǎn),則
得
,
得
,得
,
此時(shí)存在,
使得
,
,
當(dāng),
,
,
,
,
,即
在
處取得極小值,在
處取得極大值,
,
為
的兩個(gè)極值點(diǎn),則此時(shí)
.
綜上可知若函數(shù)在
上存在兩個(gè)極值點(diǎn),則實(shí)數(shù)
的取值范圍為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲盒內(nèi)有大小相同的2個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的3個(gè)紅球和3個(gè)黑球,現(xiàn)從甲,乙兩個(gè)盒內(nèi)各取2個(gè)球.
(1)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(2)設(shè)ξ為取出的4個(gè)球中紅球的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中,用如圖所示的三角形,解釋二項(xiàng)和的乘方規(guī)律.在歐洲直到1623年以后,法國(guó)數(shù)學(xué)家布萊士帕斯卡的著作(1655年)介紹了這個(gè)三角形,近年來,國(guó)外也逐漸承認(rèn)這項(xiàng)成果屬于中國(guó),所以有些書上稱這是“中國(guó)三角形”
,如圖
.17世紀(jì)德國(guó)數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了“萊布尼茨三角形”,如圖
.在楊輝三角中,相鄰兩行滿足關(guān)系式:
,其 中
是行數(shù),
.請(qǐng)類比上式,在萊布尼茨三角形中相鄰兩行滿足的關(guān)系式是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
是它的上頂點(diǎn),點(diǎn)
各不相同且均在橢圓上.
(1)若恰為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),求
的面積;
(2)若,求證:直線
過一定點(diǎn);
(3)若,
的外接圓半徑為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移
個(gè)單位長(zhǎng)度得到
的圖象,若
的對(duì)稱中心為坐標(biāo)原點(diǎn),則關(guān)于函數(shù)
有下述四個(gè)結(jié)論:
①的最小正周期為
②若
的最大值為2,則
③在
有兩個(gè)零點(diǎn) ④
在區(qū)間
上單調(diào)
其中所有正確結(jié)論的標(biāo)號(hào)是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)常數(shù)
)滿足
.
(1)求出的值,并就常數(shù)
的不同取值討論函數(shù)
奇偶性;
(2)若在區(qū)間
上單調(diào)遞減,求
的最小值;
(3)在(2)的條件下,當(dāng)取最小值時(shí),證明:
恰有一個(gè)零點(diǎn)
且存在遞增的正整數(shù)數(shù)列
,使得
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.若曲線
的極坐標(biāo)方程為
,
點(diǎn)的極坐標(biāo)為
,在平面直角坐標(biāo)系中,直線
經(jīng)過點(diǎn)
,且傾斜角為
.
(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)
的直角坐標(biāo);
(2)設(shè)直線與曲線
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
參數(shù)方程為
為參數(shù)),將曲線
上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>
,縱坐標(biāo)變?yōu)樵瓉淼?/span>
,得到曲線
.
(1)求曲線的普通方程;
(2)過點(diǎn)且傾斜角為
的直線
與曲線
交于
兩點(diǎn),求
取得最小值時(shí)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解運(yùn)動(dòng)健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個(gè)月的健身后,他們的體重情況,如三維餅圖(2)所示.對(duì)比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間內(nèi)的人增加了2個(gè)
B.他們健身后,體重在區(qū)間內(nèi)的人數(shù)沒有改變
C.他們健身后,20人的平均體重大約減少了8 kg
D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com