日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.

          (1)證明: ;

          (2)若, ,求二面角的余弦值.

          【答案】(1)證明見解析;(2).

          【解析】分析:(1) 先證明四邊形是平行四邊形,再證明,從而可得四邊形是菱形,進而可得;(2)為坐標原點,建立如圖所示的空間直角坐標系,利用向量垂直數(shù)量積為零,列方程組求出平面的法向量,結合平面的法向量為,利用空間向量夾角余弦公式可得結果.

          詳解(1)證明: 在三棱柱中,,

          .

          .

          平面.

          相交于點,相交于點,連接,

          四邊形均是平行四邊形,

          ,平面,

          ,,

          是平面與平面所成其中一個二面角的平面角.

          又平面平面,

          四邊形是菱形,從而.

          (2)解:由(1)及題設可知四邊形是菱形, ,

          .

          為坐標原點,建立如圖所示的空間直角坐標系,

          ,,,

          ,.

          設平面的法向量

          ,可得.

          又由(1)可知平面,

          可取平面的法向量為,

          。由圖可知二面角的平面角為銳角,所以它的余弦值為.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】(本小題滿分12分)

          如圖,在平面直角坐標系xOy中,平行于x軸且過點A(32)的入射光線 l1

          被直線ly=x反射.反射光線l2y軸于B,C過點A且與l1, l2 都相切.

          (1)l2所在直線的方程和圓C的方程;

          (2)分別是直線l和圓C上的動點,求的最小值及此時點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某廠家舉行大型的促銷活動,經測算,當某產品促銷費用為x(萬元)時,銷售量t(萬件)滿足(其中,).現(xiàn)假定產量與銷售量相等,已知生產該產品t萬件還需投入成本萬元(不含促銷費用),產品的銷售價格定為/件.

          1)將該產品的利潤y(萬元)表示為促銷費用x(萬元)的函數(shù);

          2)促銷費用投入多少萬元時,廠家的利潤最大.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (I)若處取得極值,求過點且與處的切線平行的直線方程;

          (II)當函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線為參數(shù)),曲線為參數(shù)).

          (1)設相交于兩點,求

          (2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線的距離的最大時,點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知aR,函數(shù)fx)=log2a).

          (Ⅰ)當a1,解不等式fx)>1;

          (Ⅱ)設a0,若對任意t∈(﹣1,0],函數(shù)fx)在區(qū)間[t,t+1]上的最大值與最小值的和不大于log26,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,函數(shù).

          1)指出的單調性(不要求證明);

          2)若有的值;

          3)若,求使不等式恒成立的的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論

          ACBD;

          ACD是等邊三角形;

          AB與平面BCD成60°的角;

          AB與CD所成的角是60°.

          其中正確結論的序號是________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知是函數(shù)的一個極值點.

          (1)求的值;

          (2)求函數(shù)的單調區(qū)間.

          查看答案和解析>>

          同步練習冊答案