日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】數(shù)列{an}為遞增的等差數(shù)列,數(shù)列{bn}滿足bnanan+1an+2nN*),設(shè)Sn為數(shù)列{bn}的前n項和,若a2,則當(dāng)Sn取得最小值時n的值為(

          A.14B.13C.12D.11

          【答案】B

          【解析】

          先根據(jù)條件求得數(shù)列{an}的通項,得到何時值為正,何時為負(fù),進(jìn)而得到數(shù)列{bn}正負(fù)的分界線,即可求得結(jié)論.

          解:因為數(shù)列{an}為遞增的等差數(shù)列,設(shè)其公差為d,則d0;

          因為a2

          a1+da1+6da1d;

          ana1+n1d=(nd

          當(dāng)時,an0

          當(dāng)時,an0;

          ∵數(shù)列{bn}滿足bnanan+1an+2nN*),設(shè)Sn為數(shù)列{bn}的前n項和,

          故數(shù)列{bn}13項為負(fù)值;

          故當(dāng)n13時,Sn取得最小值;

          故選:B.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著快遞行業(yè)的崛起,中國快遞業(yè)務(wù)量驚人,2018年中國快遞量世界第一,已連續(xù)五年突破五百億件,完全超越美日歐的總和,穩(wěn)居世界第一名.某快遞公司收取費的標(biāo)準(zhǔn)是:不超過1kg的包裹收費8元;超過1kg的包裹,在8元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計算)需再收4元.

          該公司將最近承攬(接收并發(fā)送)的100件包裹的質(zhì)量及件數(shù)統(tǒng)計如下(表1):

          表1:

          公司對近50天每天承攬包裹的件數(shù)(在表2中的“件數(shù)范圍”內(nèi)取的一個近似數(shù)據(jù))、件數(shù)范圍及天數(shù),列表如下(表2):

          表2:

          (1)將頻率視為概率,計算該公司未來3天內(nèi)恰有1天攬件數(shù)在100~299之間的概率;

          (2)①根據(jù)表1中最近100件包裹的質(zhì)量統(tǒng)計,估計該公司對承攬的每件包裹收取快遞費的平均值:

          ②根據(jù)以上統(tǒng)計數(shù)據(jù),公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余用作其他費用.目前,前臺有工作人員5人,每人每天攬件數(shù)不超過100件,日工資80元.公司正在考慮是否將前臺人員裁減1人,試計算裁員前、后公司每天攬件數(shù)的數(shù)學(xué)期望;若你是公司決策者,根據(jù)公司每天所獲利潤的期望值,決定是否裁減前臺工作人員1人?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四邊形中:,,,.點為四邊形的外接圓劣弧(不含)上一動點.

          1)證明:;

          2)若,設(shè),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為.

          Ⅰ)求橢圓的方程;

          Ⅱ)設(shè)過點的直線與橢圓相交于兩點,關(guān)于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正三棱柱中,底面邊長為2,的中點,三棱柱的體積.

          (1)求三棱柱的表面積;

          (2)求異面直線所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是等差數(shù)列, 是等比數(shù)列, , , , .

          (1)求, 的通項公式;

          (2)的前項和為,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知如圖, 平面,四邊形為等腰梯形, , .

          (1)求證:平面平面

          (2)已知中點,求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),且).

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)求函數(shù)上的最大值.

          【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .

          【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

          試題解析】

          (Ⅰ),

          設(shè) ,則.

          , ,∴上單調(diào)遞增,

          從而得上單調(diào)遞增,又∵

          ∴當(dāng)時, ,當(dāng)時, ,

          因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

          (Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

          由此可知.

          , ,

          .

          設(shè)

          .

          ∵當(dāng)時, ,∴上單調(diào)遞增.

          又∵,∴當(dāng)時, ;當(dāng)時, .

          ①當(dāng)時, ,即,這時, ;

          ②當(dāng)時, ,即,這時, .

          綜上, 上的最大值為:當(dāng)時, ;

          當(dāng)時, .

          [點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

          型】解答
          結(jié)束】
          22

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

          (Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

          ( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在以下命題中,不正確的個數(shù)為(  )

          b共線的充要條件;②若,則存在唯一的實數(shù)λ,使λ;③對空間任意一點O和不共線的三點A,B,C,若22,則PA,B,C四點共面;④若{,,}為空間的一個基底,則{,}構(gòu)成空間的另一個基底;⑤ |(·|||·||·||.

          A. 2B. 3C. 4D. 5

          查看答案和解析>>

          同步練習(xí)冊答案