【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)的直線l與拋物線
交于A,B兩點(diǎn),以AB為直徑作圓,記為
,
與拋物線C的準(zhǔn)線始終相切.
(1)求拋物線C的方程;
(2)過(guò)圓心M作x軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.
【答案】(1).(2)
【解析】
(1)過(guò)A,B,M分別作拋物線的準(zhǔn)線的垂線,垂足分別為D,E,P,由題意轉(zhuǎn)化條件得,即可得A,B,F三點(diǎn)共線,即可得解;
(2)設(shè)直線,聯(lián)立方程可得
、
、
,利用弦長(zhǎng)公式可得
,利用點(diǎn)到直線的距離求得高,表示出三角形面積后即可得解.
(1)證明:過(guò)A,B,M分別作拋物線的準(zhǔn)線的垂線,垂足分別為D,E,P,
設(shè)拋物線焦點(diǎn)為F,
由題意知圓M的半徑,
且,
即可得,所以A,B,F三點(diǎn)共線,即
,所以
,
所以拋物線C的方程為;
(2)由(1)知拋物線,設(shè)直線
,點(diǎn)
,
,
聯(lián)立可得:,
,
所以,
,
所以,
則,
,
故點(diǎn)N到直線AB距離
又
,
所以,
當(dāng)時(shí),
取最小值為32.
故所求三角形面積的取值范圍
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在高二年級(jí)開(kāi)設(shè)選修課,選課結(jié)束后,有6名同學(xué)要求改選歷史,現(xiàn)歷史選修課開(kāi)有三個(gè)班,若每個(gè)班至多可再接收3名同學(xué),那么不同的接收方案共有( )
A.150種B.360種C.510種D.512種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知平面
平面
是邊長(zhǎng)為2的等邊三角形,點(diǎn)
是
的中點(diǎn),底面
是矩形,
,
為
上一點(diǎn),且
.
(1)若,點(diǎn)
是
的中點(diǎn),求證:平面
平面
;
(2)是否存在,使得直線
與平面
所成角的正切值為
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】南北朝時(shí)代的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面的面積分別為
,則“
總相等”是“
相等”的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,,
,AF⊥平面ABC,且
.E為線段DC上一點(diǎn),沿直線AE將△ADE翻折成
,M為
的中點(diǎn),則三棱錐
體積的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人將編號(hào)分別為1,2,3,4,5的5個(gè)小球隨機(jī)放入編號(hào)分別為1,2,3,4,5的5個(gè)盒子中,每個(gè)盒子中放一個(gè)小球若球的編號(hào)與盒子的編號(hào)相同,則視為“放對(duì)”,否則視為“放錯(cuò)”,則全部“放錯(cuò)”的情況有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列,
滿足
,
.且
.
(1)求證數(shù)列為等差數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列,
的前n項(xiàng)和分別為
,
,求使得等式
成立的有序數(shù)對(duì)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分別是AC、BC的中點(diǎn),F在SE上,且SF=2FE.
(1)求證:平面SBC⊥平面SAE
(2)若G為DE中點(diǎn),求二面角G﹣AF﹣E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)若,
是圓
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離
的最小值和最大值;
(2)直線與
關(guān)于原點(diǎn)對(duì)稱,且直線
截曲線
的弦長(zhǎng)等于
,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com