日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (1)若函數(shù)內(nèi)單調(diào)遞增,求的取值范圍;
          (2)若函數(shù)處取得極小值,求的取值范圍.
          (1);(2).

          試題分析:(1)首先求導數(shù),內(nèi)單調(diào)遞增,等價于內(nèi)恒成立,即內(nèi)恒成立,再分離變量得:內(nèi)恒成立,接下來就求函數(shù)的最小值,小于等于的最小值即可;(2),顯然,要使得函數(shù)處取得極小值,需使左側(cè)為負,右側(cè)為正.令,則只需左、右兩側(cè)均為正即可.結(jié)合圖象可知,只需即可,從而可得的取值范圍.
          (1)        2分
          內(nèi)單調(diào)遞增,∴內(nèi)恒成立,
          內(nèi)恒成立,即內(nèi)恒成立        4分
          又函數(shù)上單調(diào)遞增,∴              6分
          (2),
          顯然,要使得函數(shù)處取得極小值,需使左側(cè)為負,右側(cè)為正.令,則只需左、右兩側(cè)均為正即可
          亦即只需,即 .                                    .12分
          (原解答有誤,軸不可能有兩個不同的交點)
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù)
          (1)求曲線在點處的切線方程;
          (2)若對于任意的,都有,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù),).
          (1)試討論函數(shù)的單調(diào)性;
          (2)設(shè)函數(shù),,當函數(shù)有零點時,求實數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (2011•浙江)設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R
          (1)若x=e為y=f(x)的極值點,求實數(shù)a;
          (2)求實數(shù)a的取值范圍,使得對任意的x∈(0,3e],恒有f(x)≤4e2成立.
          注:e為自然對數(shù)的底數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
          (1)求a,b,c,d的值;
          (2)若x≥-2時,f(x)≤kg(x),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          設(shè)D是函數(shù)定義域內(nèi)的一個子區(qū)間,若存在,使,則稱的一個“次不動點”,也稱在區(qū)間D上存在次不動點,若函數(shù)在區(qū)間上存在次不動點,則實數(shù)a的取值范圍是(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          如果f(x)為偶函數(shù),且f(x)導數(shù)存在,則f′(0)的值為( 。
          A.2B.1C.0D.﹣1

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知函數(shù),其中m∈R.
          (1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
          (2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          設(shè)直線與函數(shù)的圖象分別交于M、N兩點,則當MN達到最小時t的值為     

          查看答案和解析>>

          同步練習冊答案