日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知F1、F2是橢圓 + =1的左、右焦點,O為坐標(biāo)原點,點P(﹣1, )在橢圓上,線段PF2與y軸的交點M滿足 + = ;
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)⊙O是以F1F2為直徑的圓,一直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點A、B.當(dāng) =λ且滿足 ≤λ≤ 時,求△AOB面積S的取值范圍.

          【答案】
          (1)解:∵ + = ,∴點M是線段PF2的中點,

          ∴OM是△PF1F2的中位線,

          又OM⊥F1F2∴PF1⊥F1F2

          ,解得a2=2,b2=1,c2=1,

          ∴橢圓的標(biāo)準(zhǔn)方程為 =1.


          (2)解:∵圓O與直線l相切,∴ ,即m2=k2+1,

          ,消去y:(1+2k2)x2+4kmx+2m2﹣2=0,

          ∵直線l與橢圓交于兩個不同點,

          ∴△>0,∴k2>0,設(shè)A(x1,y1),B(x2,y2),

          則x1+x2=﹣ , ,

          y1y2=(kx1+m)(kx2+m)

          =

          =

          =x1x2+y1y2= =λ,

          ,∴ ,解得: ,

          S=SAOB=

          =

          = ,

          設(shè)μ=k4+k2,則 ,

          S= ,

          ∵S關(guān)于μ在[ ]上單調(diào)遞增,

          S( )= ,S(2)=


          【解析】(Ⅰ)由已知條件推導(dǎo)出 ,由此能求出橢圓的標(biāo)準(zhǔn)方程.(Ⅱ)由圓O與直線l相切,和m2=k2+1,由 ,得(1+2k2)x2+4kmx+2m2﹣2=0,由此能求出△AOB面積S的取值范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列判斷錯誤的是(
          A.命題“若xy=0,則x=0”的否命題為“若xy≠0,則x≠0”
          B.命題“?x∈R,x2﹣x﹣1≤0”的否定是“
          C.若p,q均為假命題,則p∧q為假命題
          D.命題“?x∈[1,2],x2﹣a≤0”為真命題的一個充分不必要條件是a≥4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
          (1)當(dāng)x∈[0, ]時,求f(x)的最大值、最小值以及取得最值時的x值;
          (2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ )的值域為R;命題q:3x﹣9x<a對一切實數(shù)x恒成立,如果命題“p且q”為假命題,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
          (1)求f(x)的定義域與最小正周期;
          (2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
          (1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
          (2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若實數(shù)x,y滿足x2+y2﹣2x+2 y+3=0,則x﹣ y的取值范圍是(
          A.[2,+∞)
          B.(2,6)
          C.[2,6]
          D.[﹣4,0]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下表是檢測某種濃度的農(nóng)藥隨時間x(秒)滲入某種水果表皮深度y(微米)的一組結(jié)果.

          時間x(秒)

          5

          10

          15

          20

          30

          深度y(微米)

          6

          10

          10

          13

          16


          (1)在規(guī)定的坐標(biāo)系中,畫出 x,y 的散點圖;
          (2)求y與x之間的回歸方程,并預(yù)測40秒時的深度(回歸方程精確到小數(shù)點后兩位;預(yù)測結(jié)果精確到整數(shù)). 回歸方程: =bx+a,其中 = ,a= ﹣b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|< )的部分圖象如圖所示.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)若函數(shù)F(x)=3[f(x﹣ )]2+mf(x﹣ )+2在區(qū)間[0, ]上有四個不同零點,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案