【題目】已知函數(shù),
.其中
,
(1)若.求證:
.
(2)若不等式對(duì)
恒成立,試求
的取值范圍
【答案】(1)證明見解析;(2)
【解析】
(1)求導(dǎo)得到,存在
,使
,
,故
,代入
,計(jì)算得到證明.
(2)將代入不等式,得到
,根據(jù)函數(shù)
的單調(diào)性得到
;再設(shè)
,求導(dǎo)得到單調(diào)性,計(jì)算
得到答案.
(1)由,得
,
,所以有
,
所以在
上單調(diào)遞增,且
,
,
所以存在,使
,
所以當(dāng)時(shí),
,當(dāng)
時(shí),
,
所以,(*)
且,即
,兩邊取對(duì)數(shù),得
,
代入(*),有,得證.
(2)由題意得對(duì)
成立,
(。┍匾,將代入上述不等式,得
,
即,
令,
易知在
上單調(diào)遞增,且
,所以
.
(ⅱ)下證當(dāng)時(shí),
對(duì)
成立.
即證,
因?yàn)?/span>,所以
,
設(shè),則
,
顯然在
上單調(diào)遞減,且
,
所以在
上單調(diào)遞增,在
上單調(diào)遞減,
故,不等式得證.
由(。┖停áⅲ┛芍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,,
,AF⊥平面ABC,且
.E為線段DC上一點(diǎn),沿直線AE將△ADE翻折成
,M為
的中點(diǎn),則三棱錐
體積的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅(jiān)決遏制疫情蔓延勢(shì)頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識(shí),某高中學(xué)校開展了線上新冠肺炎防控知識(shí)競(jìng)答活動(dòng),現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如圖:
(1)若此次知識(shí)競(jìng)答得分整體服從正態(tài)分布,用樣本來估計(jì)總體,設(shè)
,
分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值代替),求
,
的值(
,
的值四舍五入取整數(shù)),并計(jì)算
;
(2)在(1)的條件下,為感謝大家積極參與這次活動(dòng),對(duì)參與此次知識(shí)競(jìng)答的幸運(yùn)者制定如下獎(jiǎng)勵(lì)方案:得分低于的獲得1次抽獎(jiǎng)機(jī)會(huì),得分不低于
的獲得2次抽獎(jiǎng)機(jī)會(huì).假定每次抽獎(jiǎng)中,抽到18元紅包的概率為
,抽到36元紅包的概率為
.已知高三某同學(xué)是這次活動(dòng)中的幸運(yùn)者,記
為該同學(xué)在抽獎(jiǎng)中獲得紅包的總金額,求
的分布列和數(shù)學(xué)期望,并估算舉辦此次活動(dòng)所需要抽獎(jiǎng)紅包的總金額.
參考數(shù)據(jù):;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,過點(diǎn)
的直線
與橢圓
相交于
,
兩點(diǎn).
(1)當(dāng)直線的斜率
時(shí),求
的面積;
(2)當(dāng)時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評(píng)分標(biāo)準(zhǔn),先對(duì)本市50%的企業(yè)進(jìn)行評(píng)估,評(píng)出四個(gè)等級(jí),并根據(jù)等級(jí)給予相應(yīng)的獎(jiǎng)懲,如下表所示:
評(píng)估得分 | ||||
評(píng)定等級(jí) | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎(jiǎng)勵(lì)(萬元) | 20 | 40 | 80 |
(1)環(huán)保部門對(duì)企業(yè)抽查評(píng)估完成后,隨機(jī)抽取了50家企業(yè)的評(píng)估得分(分)為樣本,得到如下頻率分布表:
評(píng)估得分 | ||||||
頻率 | 0.04 | 0.10 | 0.20 | 0.12 |
其中、
表示模糊不清的兩個(gè)數(shù)字,但知道樣本評(píng)估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個(gè)企業(yè)評(píng)估得分中隨機(jī)抽取3個(gè),若以樣本中頻率為概率,求至少有兩家企業(yè)的獎(jiǎng)勵(lì)不少于40萬元的概率;
(2)某企業(yè)為取得一個(gè)好的得分,在評(píng)估前投入80萬元進(jìn)行技術(shù)改造,由于技術(shù)水平問題,被評(píng)定為“合格”“良好”和“優(yōu)秀”的概率分別為,
和
,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設(shè)該企業(yè)當(dāng)年因改造而增加的利潤為
萬元,求
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)若,
是圓
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離
的最小值和最大值;
(2)直線與
關(guān)于原點(diǎn)對(duì)稱,且直線
截曲線
的弦長等于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的每條棱的長度都相等,
,
分別是棱
,
的中點(diǎn),
是棱
上一點(diǎn),且
平面
.
(1)證明:平面
.
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市在開展創(chuàng)建“全國文明城市”活動(dòng)中,工作有序扎實(shí),成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評(píng).“創(chuàng)文”過程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問題情況的問卷調(diào)查,現(xiàn)從參與問卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)求出a的值;
(2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現(xiàn)要再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)第2組抽到人,求隨機(jī)變量
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)在假期進(jìn)行社會(huì)實(shí)踐活動(dòng),對(duì)歲的人群隨機(jī)抽取n人進(jìn)行了一次當(dāng)前投資生活方式——“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計(jì)和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求,
,
的值;
(Ⅱ)從年齡在歲的“房地產(chǎn)投資”人群中采取分層抽樣法抽取9人參加投資管理學(xué)習(xí)活動(dòng),其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在
歲的人數(shù)為
,求
的分布列和期望
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com