曲線,曲線
.自曲線
上一點(diǎn)
作
的兩條切線切點(diǎn)分別為
.
(1)若點(diǎn)的縱坐標(biāo)為
,求
;
(2)求的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:圓過橢圓
的兩焦點(diǎn),與橢圓有且僅有兩個公共點(diǎn):直線
與圓
相切 ,與橢圓
相交于A,B兩點(diǎn)記
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓.
(Ⅰ)設(shè)橢圓的半焦距,且
成等差數(shù)列,求橢圓
的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線
相交于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓過點(diǎn)
,離心率為
,左、右焦點(diǎn)分別為
、
.點(diǎn)
為直線
上且不在
軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為
、
和
、
,
為坐標(biāo)原點(diǎn).設(shè)直線
、
的斜率分別為
、
.
(i)證明:;
(ii)問直線上是否存在點(diǎn)
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
分別為橢圓
:
的上、下焦點(diǎn),其中
也是拋物線
:
的焦點(diǎn),點(diǎn)
是
與
在第二象限的交點(diǎn),且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)(1,3)和圓
:
,過點(diǎn)
的動直線
與圓
相交于不同的兩點(diǎn)
,在線段
取一點(diǎn)
,滿足:
,
(
且
)。
求證:點(diǎn)總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓與
軸負(fù)半軸交于點(diǎn)
,
為橢圓第一象限上的點(diǎn),直線
交橢圓于另一點(diǎn)
,橢圓左焦點(diǎn)為
,連接
交
于點(diǎn)D。
(1)如果,求橢圓的離心率;
(2)在(1)的條件下,若直線的傾斜角為
且△ABC的面積為
,求橢圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的右焦點(diǎn)為
,右準(zhǔn)線為
,離心率為
,點(diǎn)
在橢圓上,以
為圓心,
為半徑的圓與
的兩個公共點(diǎn)是
.
(1)若是邊長為
的等邊三角形,求圓的方程;
(2)若三點(diǎn)在同一條直線
上,且原點(diǎn)到直線
的距離為
,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
,
)的圖象恒過定點(diǎn)
,橢圓
:
(
)的左,右焦點(diǎn)分別為
,
,直線
經(jīng)過點(diǎn)
且與⊙
:
相切.
(1)求直線的方程;
(2)若直線經(jīng)過點(diǎn)
并與橢圓
在
軸上方的交點(diǎn)為
,且
,求
內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系和極坐標(biāo)系
的原點(diǎn)與極點(diǎn)重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
,射線
,
,
與曲線
交于極點(diǎn)
以外的三點(diǎn)A,B,C.
(1)求證:;
(2)當(dāng)時,B,C兩點(diǎn)在曲線
上,求
與
的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com