已知橢圓.
(Ⅰ)設(shè)橢圓的半焦距,且
成等差數(shù)列,求橢圓
的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線
相交于
兩點(diǎn),求
的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,雙曲線與拋物線
相交于
,直線AC、BD的交點(diǎn)為P(0,p)。
(I)試用m表示
(II)當(dāng)m變化時(shí),求p的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)P(4, 4),圓C:與橢圓E:
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦距為的雙曲線的焦點(diǎn)在x軸上,且過點(diǎn)P
.
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點(diǎn)且斜率為1,求直線m被雙曲線截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:(
)經(jīng)過
與
兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率為
,且過雙曲線
的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、
是雙曲線
上關(guān)于它的中心對(duì)稱的任意兩點(diǎn),
為該雙曲線上的動(dòng)點(diǎn),若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個(gè)關(guān)于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程(
,
不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線,曲線
.自曲線
上一點(diǎn)
作
的兩條切線切點(diǎn)分別為
.
(1)若點(diǎn)的縱坐標(biāo)為
,求
;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長(zhǎng)等于
的短軸長(zhǎng)。
與
軸的交點(diǎn)為
,過坐標(biāo)原點(diǎn)
的直線
與
相交于點(diǎn)
,直線
分別與
相交于點(diǎn)
。
(1)求、
的方程;
(2)求證:。
(3)記的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com