日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的左右頂點(diǎn)分別為,離心率
          (1)求橢圓的方程;
          (2)若點(diǎn)為曲線:上任一點(diǎn)(點(diǎn)不同于),直線與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

          (1);(2)相切

          解析試題分析:(1)由橢圓的左右頂點(diǎn)分別為,離心率,即可求出的值.即可得到結(jié)論.
          (2)依題意假設(shè)點(diǎn)C坐標(biāo),以及點(diǎn)R的坐標(biāo),由點(diǎn)A,C,R三點(diǎn)共線即可求得點(diǎn)R的坐標(biāo)表示.從而表示出點(diǎn)D的坐標(biāo),寫出直線CD的方程,再計(jì)算圓心到該直線的距離,再根據(jù)點(diǎn)C在圓上,即可判斷直線與圓的位置關(guān)系.
          (1)由題意可得,,  ∴.     2分
          ,                       3分
          所以橢圓的方程為.                      4分
          (2)解法一:曲線是以為圓心,半徑為2的圓.
          設(shè),點(diǎn)的坐標(biāo)為,       5分
          三點(diǎn)共線,   ∴,       6分
          ,則,
          ,                               7分
          ∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,      8分
          ∴直線的斜率為,
          ,∴,
          ,                                     10分
          ∴直線的方程為,化簡得,
          ∴圓心到直線的距離,       11分
          所以直線與曲線相切.                      12分
          解法二:同解法一得,          10分
          ,故,即,
          所以直線與圓相切.                      12分
          考點(diǎn):1.待定系數(shù)法求橢圓方程.2.直線與橢圓的位置關(guān)系.3.方程的思想.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)C(1,0),點(diǎn)A、B是⊙O:x2+y2=9上任意兩個(gè)不同的點(diǎn),且滿足·=0,設(shè)P為弦AB的中點(diǎn).

          (1)求點(diǎn)P的軌跡T的方程;
          (2)試探究在軌跡T上是否存在這樣的點(diǎn):它到直線x=-1的距離恰好等于到點(diǎn)C的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)分別是橢圓的左右焦點(diǎn),上一點(diǎn)且軸垂直,直線的另一個(gè)交點(diǎn)為
          (1)若直線的斜率為,求的離心率;
          (2)若直線軸上的截距為,且,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
          (1)求軌跡為的方程
          (2)設(shè)斜率為的直線過定點(diǎn),求直線與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)的相應(yīng)取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知P是圓上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動時(shí),點(diǎn)Q的軌跡為C.
          (1)求出軌跡C的方程,并討論曲線C的形狀;
          (2)當(dāng)時(shí),在x軸上是否存在一定點(diǎn)E,使得對曲線C的任意一條過E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓經(jīng)過點(diǎn)
          (1)求橢圓的方程及其離心率;
          (2)過橢圓右焦點(diǎn)的直線(不經(jīng)過點(diǎn))與橢圓交于兩點(diǎn),當(dāng)的平分線為 時(shí),求直線的斜率

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分,(1)小問4分,(2)小問8分)已知為橢圓上兩動點(diǎn),分別為其左右焦點(diǎn),直線過點(diǎn),且不垂直于軸,的周長為,且橢圓的短軸長為
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)已知點(diǎn)為橢圓的左端點(diǎn),連接并延長交直線于點(diǎn).求證:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          過拋物線C:上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長為4的正方形,點(diǎn)M在第一象限.
          (1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
          (2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),如果點(diǎn)M在直線AB的上方,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知定點(diǎn),過點(diǎn)F且與直線相切的動圓圓心為點(diǎn)M,記點(diǎn)M的軌跡為曲線E.
          (1)求曲線E的方程;
          (2)若點(diǎn)A的坐標(biāo)為,與曲線E相交于B,C兩點(diǎn),直線AB,AC分別交直線于點(diǎn)S,T.試判斷以線段ST為直徑的圓是否恒過兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案