設(shè)分別是橢圓
的左右焦點(diǎn),
是
上一點(diǎn)且
與
軸垂直,直線
與
的另一個(gè)交點(diǎn)為
.
(1)若直線的斜率為
,求
的離心率;
(2)若直線在
軸上的截距為
,且
,求
.
(1);(2)
解析試題分析:(1)由已知得,故直線
的斜率為
,結(jié)合
得關(guān)于
的方程,解方程得離心率的值;(2)依題意,直線
和
軸的交點(diǎn)是線段
的中點(diǎn).故
,①
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/62/f/6ummc4.png" style="vertical-align:middle;" />,得,從而得三個(gè)點(diǎn)
坐標(biāo)的關(guān)系,將點(diǎn)
的坐標(biāo)表示出來(lái)代入橢圓方程的,得另一個(gè)關(guān)于
的方程并聯(lián)立方程①求
即可.
(1)根據(jù)及題設(shè)知
,
.將
代入
,解得
,
(舍去).故
的離心率為
.
(2)由題意,原點(diǎn)為
的中點(diǎn),
軸,所以直線
與
軸的交點(diǎn)
是線段
的中點(diǎn).故
,即
.①由
得
.設(shè)
,由題意得,
,則
即
代入C的方程,得
,②將①及
代入②得
.解得
,
,故
.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì);2、中點(diǎn)坐標(biāo)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=
,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(1)求橢圓C的方程。
(2)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<
時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-
).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·
=0;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:(
)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
在平面直角坐標(biāo)系中,橢圓
的離心率為
,直線
被橢圓
截得的線段長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓交于
兩點(diǎn)(
不是橢圓
的頂點(diǎn)).點(diǎn)
在橢圓
上,且
,直線
與
軸、
軸分別交于
兩點(diǎn).
(i)設(shè)直線的斜率分別為
,證明存在常數(shù)
使得
,并求出
的值;
(ii)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,已知雙曲線的右焦點(diǎn)
,點(diǎn)
分別在
的兩條漸近線上,
軸,
∥
(
為坐標(biāo)原點(diǎn)).
(1)求雙曲線的方程;
(2)過上一點(diǎn)
的直線
與直線
相交于點(diǎn)
,與直線
相交于點(diǎn)
,證明點(diǎn)
在
上移動(dòng)時(shí),
恒為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓(
)的左、右焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段
為直徑的圓經(jīng)過點(diǎn)
,經(jīng)過原點(diǎn)
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為
,離心率
.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線
:
上任一點(diǎn)(
點(diǎn)不同于
),直線
與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為
,離心率
.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線
:
上任一點(diǎn)(
點(diǎn)不同于
),直線
與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com