日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).

          (1)求函數(shù)的單調(diào)區(qū)間和極值;

          (2)是否存在,對(duì)任意的,任意的,都有?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          【答案】(1)當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,,,無(wú)極小值;

          當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,無(wú)極大值.

          (2)存在滿足題意.

          【解析】

          (1)求出導(dǎo)數(shù),分討論函數(shù)的單調(diào)區(qū)間和極值.

          (2)由題意可得,利用導(dǎo)數(shù)求出,解關(guān)于的不等式即可.

          (1)).

          當(dāng)時(shí),由可得;由可得,

          函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,,

          ,無(wú)極小值.

          當(dāng)時(shí),由可得;由可得,

          函數(shù)的單調(diào)遞減區(qū)間是,,單調(diào)遞增區(qū)間是,

          ,無(wú)極大值.

          綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,,無(wú)極小值;

          當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,,無(wú)極大值.

          (2)由題意,只需.

          由(1)知當(dāng)時(shí),

          函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

          .

          ,.

          當(dāng),時(shí),

          可得;由可得.

          函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

          .

          ,不等式兩邊同乘以,得,

          .

          ,.

          存在滿足題意.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】祖暅原理:兩個(gè)等高的幾何體,若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.利用祖暅原理可以求旋轉(zhuǎn)體的體積.比如:設(shè)半圓方程為,半圓與軸正半軸交于點(diǎn),作直線,交于點(diǎn),連接為原點(diǎn)),利用祖暅原理可得:半圓繞軸旋轉(zhuǎn)所得半球的體積與軸旋轉(zhuǎn)一周形成的幾何體的體積相等.類(lèi)比這個(gè)方法,可得半橢圓軸旋轉(zhuǎn)一周形成的幾何體的體積是_________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:的離心率為,且過(guò)點(diǎn) (,),點(diǎn) P 在第四象限, A 為左頂點(diǎn), B 為上頂點(diǎn), PA 交 y 軸于點(diǎn) C,PB 交 x 軸于點(diǎn) D.

          (1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

          (2) 求 △PCD 面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).

          (Ⅰ)若函數(shù)的圖象在處的切線為,當(dāng)實(shí)數(shù)變化時(shí),求證:直線經(jīng)過(guò)定點(diǎn);

          (Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線()的焦點(diǎn)為,以拋物線上一動(dòng)點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn)F.若圓的面積最小值為.

          (Ⅰ)的值;

          (Ⅱ)當(dāng)點(diǎn)的橫坐標(biāo)為1且位于第一象限時(shí),過(guò)作拋物線的兩條弦,且滿足.若直線AB恰好與圓相切,求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)),數(shù)列的前項(xiàng)和為,點(diǎn)圖象上,且的最小值為.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,“大衍數(shù)列”:來(lái)源于《乾坤譜》中對(duì)《易傳》“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生過(guò)程中曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項(xiàng)和的程序框圖.執(zhí)行該程序框圖,輸入,則輸出的( )

          A. 64 B. 68 C. 100 D. 140

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說(shuō):“作品獲得一等獎(jiǎng)”;

          乙說(shuō):“作品獲得一等獎(jiǎng)”;

          丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說(shuō):“作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫(xiě)有12,1323.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說(shuō):我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說(shuō):我與丙的卡片上相同的數(shù)字不是1”,丙說(shuō):我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案