日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】①用反證法證明:在一個三角形中,至少有一個內(nèi)角大于或等于60°;
          ②已知 ,試用分析法證明:

          【答案】①證明:假設(shè)在一個三角形中,沒有一個內(nèi)角大于或等于60°,
          即均小于 ,則三內(nèi)角和小于 ,
          這與三角形中三個內(nèi)角和等于 矛盾,
          故假設(shè)不成立,原命題成立;
          ②證明:要證上式成立,需證
          需證
          需證
          需證
          需證n2+2n+1>n2+2n
          只需證 1>0
          因為 1>0 顯然成立,所以原命題成立.
          【解析】本題考查反證法與分析法的應用,解題時需要注意以下關(guān)鍵要點:(1)反證法證明問題的關(guān)鍵是:提出結(jié)論的反面,并以此為條件推導導出矛盾;(2)分析法要求由結(jié)論成立反推條件(由果索因).
          【考點精析】利用反證法與放縮法對題目進行判斷即可得到答案,需要熟知常見不等式的放縮方法:①舍去或加上一些項②將分子或分母放大(縮小).

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線 ,在下列四個命題紅,正確命題的個數(shù)( )
          ①若 ②若 ,則
          ③若 ,則 ④若 ,則
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.已知曲線C1 (t為參數(shù)),C2 (θ為參數(shù)). (Ⅰ)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
          (Ⅱ)若C1上的點P對應的參數(shù)為t=﹣ ,Q為C2上的動點,求線段PQ的中點M到直線C3:ρcosθ﹣ ρsinθ=8+2 距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】①設(shè)三個正實數(shù)ab , c , 滿足 ,求證:ab , c一定是某一個三角形的三條邊的長;
          ②設(shè)n個正實數(shù) a1,a2,...an 滿足不等式 (其中 ),求證: a1,a2,...an 中任何三個數(shù)都是某一個三角形的三條邊的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】用反證法證明:已知a,b均為有理數(shù),且 都是無理數(shù),求證: 是無理數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等比數(shù)列{an}的各項均為正數(shù),且a2=6,a3+a4=72.
          (1)求數(shù)列{an}的通項公式;
          (2)若數(shù)列{bn}滿足bn=an﹣n(n∈N*),求數(shù)列{bn}的前n項和

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三棱錐S﹣ABC中,△ABC為直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
          求證:AD⊥平面SBC.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
          A.m=﹣ ,n=﹣2
          B.m= ,n=2
          C.m= ,n=﹣2
          D.m=﹣ ,n=2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知F2、F1是雙曲線 =1(a>0,b>0)的上、下焦點,點F2關(guān)于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
          A.3
          B.
          C.2
          D.

          查看答案和解析>>

          同步練習冊答案