日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】用反證法證明:已知a,b均為有理數(shù),且 都是無理數(shù),求證: 是無理數(shù).

          【答案】【解答】
          證明:證法一:假設(shè) 為有理數(shù),令 =t ,
          ,兩邊平方,得
          .
          a , b , t均為有理數(shù),∴ 也是有理數(shù).
          為有理數(shù),這與已知 為無理數(shù)矛盾.
          一定是無理數(shù).
          證法二:假設(shè) 為有理數(shù),
          .
          由 a>0.b>0 ,得 .
          .
          ab為有理數(shù),且 為有理數(shù),
          為有理數(shù),即 為有理數(shù).
          為有理數(shù),即 2 為有理數(shù).
          從而 也應(yīng)為有理數(shù),這與已知 為無理數(shù)矛盾,
          一定是無理數(shù).
          【解析】本題主要考查了反證法與放縮法,解決問題的關(guān)鍵是按反證法的步驟,即先否定結(jié)論,把假設(shè)和已知結(jié)合起來,推出矛盾,即假設(shè)不成立;結(jié)論為肯定形式或者否定形式的命題的證明常用反證法,通過反設(shè)將肯定命題轉(zhuǎn)化為否定命題或?qū)⒎穸}轉(zhuǎn)化為肯定命題,然后用轉(zhuǎn)化后的命題作為條件進(jìn)行推理,很一般推出矛盾,從而達(dá)到證題的目的.
          【考點(diǎn)精析】掌握反證法與放縮法是解答本題的根本,需要知道常見不等式的放縮方法:①舍去或加上一些項(xiàng)②將分子或分母放大(縮小).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 ,設(shè)函數(shù) .
          (1)求函數(shù) 的單調(diào)遞增區(qū)間;
          (2)在 中,邊 分別是角 的對(duì)邊,角 為銳角,若
          , , 的面積為 ,求邊 的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB=2 ,VC=1,線段AB的中點(diǎn)為D.

          (1)求證:平面VCD⊥平面ABC;
          (2)求三棱錐V﹣ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2n2+5n.
          (1)求證:數(shù)列{3 }為等比數(shù)列;
          (2)設(shè)bn=2Sn﹣3n,求數(shù)列{ }的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,an=2n , bn=50﹣3n,cn=
          (1)求c4與c8的等差中項(xiàng);
          (2)當(dāng)n>5時(shí),設(shè)數(shù)列{Sn}的前n項(xiàng)和為Tn
          (ⅰ)求Tn;
          (ⅱ)當(dāng)n>5時(shí),判斷數(shù)列{Tn﹣34ln}的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】①用反證法證明:在一個(gè)三角形中,至少有一個(gè)內(nèi)角大于或等于60°;
          ②已知 ,試用分析法證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè) ,且 ,求證:a3+b3>a2b+ab2 .(提示:a3+b3=(a+b)(a2-ab+b2) )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列 的首項(xiàng) ,前n項(xiàng)和為 ,且 .
          (1)證明數(shù)列 是等比數(shù)列;
          (2)令 ,求函數(shù) 在點(diǎn)x=1處的導(dǎo)數(shù) ,并比較 的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 = , = ,且
          (1)求 及| |
          (2)若f(x)= ﹣2λ| |的最小值為 ,求正實(shí)數(shù)λ的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案