【題目】已知,橢圓
:
的離心率為
,直線
與
交于
,
兩點(diǎn),
長(zhǎng)度的最大值為4.
(1)求的方程;
(2)直線與
軸的交點(diǎn)為
,當(dāng)直線
變化(
不與
軸重合)時(shí),若
,求點(diǎn)
的坐標(biāo).
【答案】(1);(2)
.
【解析】
(1)由橢圓中弦長(zhǎng)最長(zhǎng)的位置在長(zhǎng)軸位置可得的值,再由離心率并結(jié)合
求得
的值,從而求得橢圓的標(biāo)準(zhǔn)方程;
(2)如圖所示:
由題中關(guān)系式利用平面幾何知識(shí)結(jié)合正弦定理可得:∠MPA=∠MPB,進(jìn)而可得kPA=-kPB,設(shè)A點(diǎn)坐標(biāo)
,B點(diǎn)坐標(biāo)
,M點(diǎn)坐標(biāo)(
,0)和直線l的方程
,和橢圓方程聯(lián)立化簡(jiǎn)得
,然后利用根的判別式、韋達(dá)定理和斜率公式綜合運(yùn)算可得
的值.
(1)由題意弦長(zhǎng)AB長(zhǎng)度的最大值為4,可得2a=4即得a=2,由離心率,
且聯(lián)立解得
=4,
=3,所以橢圓
的方程為
.
(2)設(shè),
,
的方程為
,代入橢圓方程并整理得
,
由,
解得,
,
.
因?yàn)?/span>即
,由角平分定理或正弦定理,即可得到
,即
,所以
,即
,
又,所以
,
即,
所以,因?yàn)?/span>
為變量,所以
,
所以點(diǎn)的坐標(biāo)為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商從沿海城市水產(chǎn)養(yǎng)殖廠購(gòu)進(jìn)一批某海魚(yú),隨機(jī)抽取50條作為樣本進(jìn)行統(tǒng)計(jì),按海魚(yú)重量(克)得到如圖的頻率分布直方圖:
(1)若經(jīng)銷商購(gòu)進(jìn)這批海魚(yú)100千克,試估計(jì)這批海魚(yú)有多少條(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)市場(chǎng)行情,該海魚(yú)按重量可分為三個(gè)等級(jí),如下表:
等級(jí) | 一等品 | 二等品 | 三等品 |
重量(g) |
若經(jīng)銷商以這50條海魚(yú)的樣本數(shù)據(jù)來(lái)估計(jì)這批海魚(yú)的總體數(shù)據(jù),視頻率為概率.現(xiàn)從這批海魚(yú)中隨機(jī)抽取3條,記抽到二等品的條數(shù)為X,求x的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求不等式
的解集;
(2)若的圖像與
軸圍成直角三角形,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的底面
是正方形,點(diǎn)
在棱
上,
.
(1)證明:平面
;
(2)若,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
,
)的圖象與
軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為
的等差數(shù)列,把函數(shù)
的圖象沿
軸向左平移
個(gè)單位,縱坐標(biāo)擴(kuò)大到原來(lái)的2倍得到函數(shù)
的圖象,則下列關(guān)于函數(shù)
的命題中正確的是( )
A.函數(shù)是奇函數(shù)B.
的圖象關(guān)于直線
對(duì)稱
C.在
上是增函數(shù)D.當(dāng)
時(shí),函數(shù)
的值域是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),若函數(shù)
的兩個(gè)極值點(diǎn)
恰為函數(shù)
的兩個(gè)零點(diǎn),且
的范圍是
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),其中
.以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求出曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)已知曲線與
交于
,
兩點(diǎn),記點(diǎn)
,
相應(yīng)的參數(shù)分別為
,
,當(dāng)
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作.卷八中第33問(wèn):“今有三角果一垛,底闊每面七個(gè).問(wèn)該若干?”如圖是解決該問(wèn)題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )
A.28B.56C.84D.120
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com