(2013•天津)已知函數(shù).
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間上的最大值和最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
.
(1)若,求函數(shù)
的解析式;
(2)若時(shí),
的圖像與
軸有交點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù),非零向量
,我們稱
為函數(shù)
的“相伴向量”,
為向量
的“相伴函數(shù)”.
(1)已知函數(shù)的最小正周期為
,求函數(shù)
的“相伴向量”;
(2)記向量的“相伴函數(shù)”為
,將
圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再將所得的圖象上所有點(diǎn)向左平移
個(gè)單位長(zhǎng)度,得到函數(shù)
,若
,求
的值;
(3)對(duì)于函數(shù),是否存在“相伴向量”?若存在,求出
“相伴向量”;
若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)f(x)=6cos2+
sin ωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)=,且x0∈
,求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的最大值,并寫出
取最大值時(shí)
的取值集合;
(2)已知中,角
的對(duì)邊分別為
若
求實(shí)數(shù)
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com