日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】,

          (Ⅰ)求證:

          (Ⅱ)求證:;

          (Ⅲ)在(Ⅱ)中的不等式中,能否找到一個代數(shù)式,滿足所求式?若能,請直接寫出該代數(shù)式;若不能,請說明理由.

          【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析;(Ⅲ)答案見解析.

          【解析】分析:Ⅰ)由題意結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;

          ()由不等式的性質(zhì)可證得..

          ()利用放縮法可給出結(jié)論:,

          詳解:Ⅰ)因為,且,所以,所以

          ()因為,所以.又因為,所以由同向不等式的相加性可將以上兩式相加得.所以

          所以.(i)

          因為,所以由同向不等式的相加性可將以上兩式相加得

          所以(ii)

          所以由兩邊都是正數(shù)的同向不等式的相乘性可將以上兩不等式(i)(ii)相乘得.

          ()因為,

          所以,.(只要寫出其中一個即可)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形ABCD中,ABCD,CD=2,△ABC是邊長為3的等邊三角形.

          (1)求AD

          (2)求sinDAB

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

          (Ⅰ)求證:MN∥平面BDE;
          (Ⅱ)求二面角C﹣EM﹣N的正弦值;
          (Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為 ,求線段AH的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,,

          AC的中點(diǎn)O為球心,AC為直徑的球面交PD于點(diǎn)M,交PC于點(diǎn)N.

          (1)求證:平面ABM⊥平面PCD;

          (2)求直線CD與平面ACM所成角的大。

          (3)求點(diǎn)N到平面ACM的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

          (Ⅱ)若曲線上的點(diǎn)到直線的最大距離為6,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          (Ⅰ)求證:;

          (Ⅱ)求證:

          (Ⅲ)在(Ⅱ)中的不等式中,能否找到一個代數(shù)式,滿足所求式?若能,請直接寫出該代數(shù)式;若不能,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面平面,四邊形為矩形,的中點(diǎn),的中點(diǎn).

          (1)求證:;

          (2)求證:平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)若不等式時恒成立,求實數(shù)的取值范圍;

          (3)當(dāng)時,證明:

          查看答案和解析>>

          同步練習(xí)冊答案