【題目】設(shè) 個正數(shù)
滿足
(
且
).
(1)當(dāng) 時,證明:
;
(2)當(dāng) 時,不等式
也成立,請你將其推廣到
(
且
)個正數(shù)
的情形,歸納出一般性的結(jié)論并用數(shù)學(xué)歸納法證明.
【答案】
(1)
證明:因為 (
且
)均為正實數(shù),
左—右=
=0,
所以,原不等式 成立
(2)
歸納的不等式為:
(
且
).
記 ,
當(dāng) (
)時,由(1)知,不等式成立;
假設(shè)當(dāng) (
且
)時,不等式成立,即
.
則當(dāng) 時,
=
=
= ,
因為 ,
,
,
所以 ,
所以當(dāng) ,不等式成立.
綜上所述,不等式 (
且
)成立.
【解析】本題主要考查了數(shù)學(xué)歸納法證明不等式,解決問題的關(guān)鍵是根據(jù)(1)由于 與
積為
,所以利用基本不等式進(jìn)行證明:
,
,
,三式相加得
,即
(2)本題結(jié)構(gòu)對稱,易于歸納出
,用數(shù)學(xué)歸納法證明時的難點在于明確
時式子與
式子關(guān)系:其差為
,問題轉(zhuǎn)化為證明
,這可利用作差,因式分解得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的分?jǐn)?shù)三角形,稱為“萊布尼茨三角形”.這個三角形的規(guī)律是:各行中的每一個數(shù),都等于后面一行中與它相鄰的兩個數(shù)之和(例如第4行第2個數(shù) 等于第5行中的第2個數(shù)
與第3個數(shù)
之和).則
在“萊布尼茨三角形”中,第10行從左到右第2個數(shù)到第8個數(shù)中各數(shù)的倒數(shù)之和為( )
A.5010
B.5020
C.10120
D.10130
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C上的點到點F(0,1)的距離比它到直線y=-3的距離小2
(1)求曲線C的方程
(2)過點F且斜率為K的直線L交曲線C于A、B兩點,交圓F:于M、N兩點(A、M兩點相鄰)若
,當(dāng)
時,求K的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x+ 有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)(0,
]上是減函數(shù),在[
,+∞)上是增函數(shù).
(1)已知f(x)= ,g(x)=﹣x﹣2a,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域.
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x),若對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間(﹣1,1)上的偶函數(shù)f(x),在(0,1)上為增函數(shù),f(a﹣2)﹣f(4﹣a2)<0,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com